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Abstract

Permutation entropy is a metric used to quantify the regularity of a time series.
Here I report on its application to the problem of characterizing the behavior of
a few nonlinear dynamical systems, specifically the Duffing oscillator and the Tent
and Logistic maps. Numerical results indicate that the permutation entropy can
in principle be used to detemine the entropy rate of a system, and thus whether
it is chaotic or not, but that in practice the convergence is slow. Additionally,
comparisons are made between the excess entropy of the tent and logistic maps
and a recently defined analagous quantity for permutations, the permutation excess
entropy.
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1 Introduction

Automatically classifying the behavior of a nonlinear dynamical system as periodic or
chaotic from time series data alone is challenging. One approach involves a quantity
called the Permutation Entropy [1] [2] [3]. The per symbol permutation entropy con-
verges to the entropy rate of a process for a broad class of systems. Nonzero entropy
rate is indicative of stochasticity in discrete time discrete state processes, and chaos in
continuous deterministic dynamical systems, when applied to their symbolic dynamics.
This suggests that permutation entropy can in principle be used to distinguish regular
and chaotic behavior in dynamical systems.

Permutation entropy has a number of advantages over other approaches to this prob-
lem. It is simple to implement, relatively fast, and robust to observational noise. The
convergence described above, however, is not guarenteed to be within practical limits.
The focus of this report is to determine how practical the permutation entropy is when
employed in this way.

Results of measurements of permutation entropy are shown for three systems: the
Duffing oscillator, a canonical nonlinear oscillator, the Tent map, and the Logistic map.
For each of these systems, the permutation entropy rate is compared to the entropy
rate over a range of parameters. It is apparent that the permutation entropy rate
captures qualitatively the behavior of the entropy rate for all these examples, however
the quantitative convergence is inconveniently slow.

Additionally, the Permutation Excess Entropy is examined, for the Tent and Logistic
maps. The permutation excess entropy is defined analogously to the standard excess
entropy, and converges to it for the same class of systems for which the permutation
entropy rate converges to the entropy rate [2]. Again, qualitative behavior is captured,
however quantitative convergence is complicated by the partition dependence of the
standard excess entropy, making the interpretation of the comparison less clear.

2 Background

Permutation entropy is best defined through a simple example. Let our time series data
be the following:

x = (5, 9, 2, 4, 6, 8, 9).

Now we examine the time series through a length 3 sliding window. Our first window is
(5, 9, 2). We map this window to the permutation 132 because x1 < x3 < x2. The next
window is (9, 2, 4), which maps to 231. The next window, (2, 4, 6), maps to 123, as do
the final two windows, (4, 6, 8) and (6, 8, 9). The permutation entropy of order 3 is then

H∗3 = 2 · −1/5 · log2 1/5− 3/5 · log2 3/5

H∗3 ≈ 1.37 bits
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More generally, to compute the permutation entropy of order n we consider all n! per-
mutations of the orderings of elements in windows of length n. We define the frequency
of a permutation as

p(π) =
# of windows of permutation π

T − n+ 1

where T is the length of the time series, that is, the total number of elements. The
normalization T − n + 1 is simply the number of length n windows in a time series of
length T . This frequency converges to the true probability in the T → ∞ limit. With
these probabilities in hand, the permutation entropy of order n is then

H∗n = −
∑
π

p(π) log2 p(π).

The per symbol permutation entropy is defined as

h∗n =
H∗n
n− 1

.

There is an n−1 in the denominator as opposed to an n because H∗1 is not defined. This
in turn leads us to define the permutation entropy rate of a process as

h∗ = lim
n→∞

h∗n.

It is this quantity that can be shown to converge to the Shannon entropy rate of a
process for a broad class of systems. The results of this paper will compare how the
lenght n approximate to h∗, h∗n, converges to hµ, the Shannon entropy rate, which will
be computed by other means.

Another quantity of interest is the Permutation Excess Entropy. This is defined in
terms of H∗n and h∗ in the same way that the conventional excess entropy is defined in
terms of the length l Shannon entropy Hl and the Shannon entropy rate hµ. Explicitly,
the excess entropy E is defined as

E = lim
l→∞

Hl − l · hµ.

There are other equivalent expressions for the E, which are helpful for understanding
and interpretation, but here we will require only this form. The permutation excess
entropy is defined as

E∗ = lim
n→∞

H∗n − n · h∗.

For the systems analyzed, hµ can be substituted for h∗. The convergence of the length
n approximation to the permutation excess entropy,

E∗n = H∗n − n · hµ,

is compared with the E computed from a binary partition of data from the tent and
logistic maps.
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Figure 1: Duffing Potential

3 The System(s)

The systems reported on here are canonical examples of chaotic continuous and discrete
time dynamical systems.

3.1 The Duffing Oscillator

The Duffing oscillator is a nonlinear, continuous time dynamical system whose equations
of motion is

ẍ+ γẋ− αx+ βx3 = G cos(ωt),

in the damped, driven case. Physically speaking, this is the equation of motion for a
cosinusoidally driven particle in a quadratic potential well subject to viscous damping.
Here we will consider the double well case, whose potential is illustrated in figure 1.

When considering the chaotic dynamics of the damped driven Duffing equation, it is
important to emphasize that the equation above can be recast as 3 first order equations:

ẋ = y

ẏ = −γy + αx− βx3 +G cos θ

θ̇ = ω.

From this it can be seen that the true phase space of the system is 3 dimensional, which
in turn means the system can exhibit chaotic dynamics. This form is also essential for the
calculation of the Lyapunov spectrum of the system, as will be described in the Methods
section. In my analysis, I will vary G and ω, the driving frequency and amplitude, while
holding the damping constant.

3.2 Tent and Logistic Maps

The tent and logistic maps are nonlinear, discrete time maps of the unit interval onto
itself. The tent map is defined as follows:

xn+1 =

{
axn, 0 ≤ xn ≤ 1

2
a(1− xn), 1

2 < x ≤ 1
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The logistic map is defined as:

xn+1 = rxn(1− xn)

Both of these maps exhibit periodic and chaotic behavior as their control parameters
are varied. 1 dimensional maps are computationally very easy and efficient to implement,
which greatly facilitates the analysis of the convergence of h∗n.

4 Methods

4.1 Duffing Oscillator Entropy Rate

The entropy rate computed for the Duffing oscillator is the Kolmogorov-Sinai entropy
rate, which is the analog of the Shannon entropy rate for continuous time systems. A
result known as Pesin’s theorem states that the KS entropy rate is given by the sum
of the positive Lyapunov exponents of the system. Due to dimensional constraints, for
a 3 dimensional dynamical system, there can only be one positive Lyapunov exponent,
therefore for the Duffing oscillator the KS entropy rate is equal to the largest Lyapunov
exponent.

Time series data for the Duffing oscillator was generated using built in ODE solvers
in the Python packages SciPy and NumPy. To compute the Lyapunov exponents of the
system, the system must be integrated in its full three dimensional, autonomous form.
Additionally, time evolution via the Jacobian of the system is required, giving a total of
12 ODEs that need to be evolved in time simultaneously.

The essence of the algorithm for computing the Lyapunov spectrum goes as follows.
Begin with a set of orthonormal vectors, with the number of vectors equal to the dimen-
sion of the dynamical system. Evolve this set of vectors in time using the Jacobian of
the dynamical system. The Jacobian of the system determines how small displacements
from a trajectory evolve in time, so the evolution of these vectors reflect how neighboring
trajectories diverge from one another. After evolving for a period of time, the vectors
have been stretched and rotated. The extent to which the vectors have stretched reflects
the Lyapunov spectrum of the system.

To get a quantitative measurement of the Lyapunov spectrum, the orthonormal set of
vectors is evolved forward by the Jacobian and periodically reorthonormalized via appli-
cation of the Graham-Schmidt procedure. At each reorthonormalization, the logarithm
of the change in length of each vector is recorded. Asymptotically, the time average of
the logartithm of the changes in length of all of the vectors gives the complete Lyapunov
spectrum.

4.2 Duffing Oscillator Permutation Entropy Rate

When calculating permutation entropy of a dynamical system it is only necessary to
focus on a single degree of freedom of the system [3]. For the Duffing oscillator, I chose
to focus on the position variable.
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The position time series must be discretize by sampling at some frequency. This
frequency was chosen to be twice the Nyquist frequency, with the justification being that
given that in principle the complete continous signal can be reconstructed from such a
discretization, this discretization carries the important information of the continuous
signal.

The Nyquist frequency is the frequency at which the Fourier transform of a signal
goes to zero. For the Duffing oscillator, in the chaotic regime at least, the Fourier
transform never decays completely to zero, so a cutoff must be decided upon. From
inspection of Fourier transforms of Duffing signals from multiple parameters, it seemed
that 3ω, three times the driving frequency, is a good cutoff, and we used that value for
all the Duffing oscillator permutation entropy calculations.

4.3 1-D Map Entropy Rate

Computation of the entropy rate for the 1-D maps is much more straightforward than
for the Duffing system. In this case, Pesin’s theorem guarentees that the Kolmogorov-
Sinai entropy rate is equal to the Lyapunov exponent of the system. For 1-D maps, the
Lyapunov exponent is given by

λ = lim
N→∞

N−1∑
n=0

log2 |f ′(xn)|.

For the tent map, this can be evaluated in closed form, since everywhere on the interval
|f ′(x)| = a. The Lyapunov exponent, and the Kolmogorov-Sinai entropy rate, is simply

λ = log2 a.

For the logistic map, the expression for λ must be approximated from the xn values of
the trajectory.

4.4 1-D Map Excess Entropy

The analysis of the permutation excess entropy can only be carried out on the 1-D
maps, because there is no known way of computing the standard excess entropy for
continuous time systems. Excess entropy can be computed for 1-D maps from their
symbolic dynamics. I chose to compare the permutation excess entropy with the excess
entropy derived from the binary partition of the tent and logistic maps, the binary
partition being the simplest generating partition for symmetric unimodal maps. From
the binary time series, the length l Shannon entropy Hl is computed, and then the length
l approximate to the excess entropy is

El = Hl − hµ · l.

A large l value is taken as the excess entropy of the map, and various length approxi-
mations of the permutation excess entropy are compared to it.
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Figure 2: Duffing oscillator permutation entropy rate comparison

5 Results

5.1 Duffing Oscillator Permutation Entropy Rate

Figure 2 shows the Kolmogorov-Sinai entropy rate and the permutation entropy rate
of the Duffing oscillator for a range of dimensionless driving amplitude and frequency
values. It is clear that the permutation entropy rate shares the same qualitative features
as the entropy rate, but quantitatively it does not match. The extent of the qualita-
tive match is impressive when you consider the fact that the permutation entropy was
computed with no reference to the equations of motion whatsoever. Also impressive is
how little refinement was needed in the permutation entropy calculation. The Nyquist
frequency was taken to be 3ω for each simulation, which is a rather crude estimate,
and the permutation entropy rate was only taken to order n = 5. Yet despite that, the
qualitative agreement is undeniable.

It was the desire to understand the quantitative convergence of h∗n to hµ that lead
to the analysis of 1 dimensional maps, for which generating time series, calculating
Lyapunov exponents, and calculating permutation entropies is far more computationally
efficient and straightforward.

5.2 1-D Maps Permutation Entropy Rate

Before making a comparsion between the permutation entropy rate and the entropy rate
for the 1-D maps, the data requirements for permutation entropies of different orders
were assessed. Figures 3 and 4 plot the order n = 2 through 15 permutation entropy
rate estimates for different data lengths for the tent and logistic maps, respectively.

When, for a given order n, points lie on top of each other, it means that going to
longer data lengths does not improve the estimate. Therefore, it is safe to use the shortest
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Figure 3: Tent map permutation entropy rate convergence

Figure 4: Logistic map permutation entropy rate convergence
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Figure 5: Tent and Logistic map permutation excess entropy comparison

data length that is among those points that overlap. From the results in figures 3 and 4 I
concluded that data lengths of 104 are sufficient for n ≤ 12. For 12 < n ≤ 15, length 105

was used. Note how much structure must be being picked up by the permutations given
that, despite there being 15! ≈ 1.3 trillion permutations of 15 elements, data lengths
of 105 and 106 are consistent with one another. This suggests that only a very small
fraction of possible permutations are represented in the data.

Figure 5 shows h∗n to hµ over a range of map parameter values for increasing orders n.
In both the tent and logistic maps, we can see a monotonically decreasing trend toward
hµ as n is increased. At large n values, we again see that the permutation entropy rate
captures qualitatively the behavior of hµ quite well, but does not match quantitatively.

Note that in the periodic windows of the logistic map the permutation entropy rate
exhibits a kind of bistability. This is a well understood effect that is guaranteed to vanish
as n→∞.

5.3 1-D Map Permutation Excess Entropy

Figures 6 and 7 compare the binary partition derived excess entropy and the permutation
excess entropy for the tent and logistic maps. Again, there seems to be an interesting de-
gree of qualitative agreement between the binary excess entropy and the various E∗n, but
there is no longer any sense of monotonic convergence. This is actually understandable,
given the recently discovered fact that the excess entropy measured for a 1-D map is
partition dependent. That is, different generating partitions, partitions that are equally
”good” in the sense of having unique symbol sequences for each initial condition and
have Shannon entropy rate equal to the Kolmogorov-Sinai entropy rate, give different
values for the excess entropy.

9



Figure 6: Tent map permutation excess entropy comparison

Figure 7: Logistic map permutation excess entropy comparison

With this insight in mind, it makes sense that the excess entropy derived from per-
mutations, which are a kind of partition that becomes generating in the n → ∞ limit,
would give a different result than that derived from the binary partition. The permuta-
tion excess entropy should not be used as a method to compute some ”standard” excess
entropy, but should be seen as an informative quantity in its own right. Viewed this way,
the comparisons in figures 6 and 7 show that while the values derived from the different
partitions are different, they have similar qualitative features.
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6 Conclusions

The results shown indicate that the permutation entropy does give some indication as
to whether the behavior of a system is periodic or chaotic. It does not, however, give
a clear binary answer to this question, as does the entropy rate, which is much more
difficult to calculate. Moreover, as the parameters of the dynamical system are varied,
the permutation entropy rate has very similar behavior as the entropy rate, but is not
quantitatively the same. Quantitative agreement is possible in principle, by going to
very high order, but does not appear to be practical. The results show the permutation
entropy rate approaching the quantitative value of the entropy rate, but at a slow and
diminishing rate.

The permutation excess entropy result is a similar but more complicated story. The
results show a qualitative similarity between the binary partition excess entropy and the
permutation excess entropy, but due to the partition dependence of the excess entropy,
we shouldn’t expect them to converge. The result then indicates that the excess entropy
from the partition induced by permutation is structurally similar to that induced by
the binary partition. This is good news, since there are many systems for which simple
generating partitions do not exist, and this suggests that in these cases permutation
excess entropy could be a useful proxy.
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