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Nanoelectromechanical Systems

500 nm

Roukes group Nano Letters 2011

Sub-micron scale resonators
Mechanical behavior electrically measure/controlled
Subject to thermal fluctuations

We want to make Maxwell Demons with them!
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Nanobeams = Duffing Oscillators

Compress a beam, eventually buckles up/down
Can model bistable beam dynamics with Duffing equation
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Duffing Equation

ẍ + γẋ − αx + βx3 = G cosωt

Interested in mapping behavior over parameter space
Also want to characterize behavior of experimental system
Exploring utility of Permutation Entropy
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Permutation Entropy

Measure chaos directly from data, without equations of motion?

Permutation Entropy:

Doesn’t need description of process
Simple algorithm
Fast
Robust to noise
Can get Shannon entropy rate of process in infinite limit
Data requirement grows quickly

Russell Hawkins (UC Davis) Group Meeting 5 / 30



Permutation Entropy

Measure chaos directly from data, without equations of motion?

Permutation Entropy:
Doesn’t need description of process

Simple algorithm
Fast
Robust to noise
Can get Shannon entropy rate of process in infinite limit
Data requirement grows quickly

Russell Hawkins (UC Davis) Group Meeting 5 / 30



Permutation Entropy

Measure chaos directly from data, without equations of motion?

Permutation Entropy:
Doesn’t need description of process
Simple algorithm

Fast
Robust to noise
Can get Shannon entropy rate of process in infinite limit
Data requirement grows quickly

Russell Hawkins (UC Davis) Group Meeting 5 / 30



Permutation Entropy

Measure chaos directly from data, without equations of motion?

Permutation Entropy:
Doesn’t need description of process
Simple algorithm
Fast

Robust to noise
Can get Shannon entropy rate of process in infinite limit
Data requirement grows quickly

Russell Hawkins (UC Davis) Group Meeting 5 / 30



Permutation Entropy

Measure chaos directly from data, without equations of motion?

Permutation Entropy:
Doesn’t need description of process
Simple algorithm
Fast
Robust to noise

Can get Shannon entropy rate of process in infinite limit
Data requirement grows quickly

Russell Hawkins (UC Davis) Group Meeting 5 / 30



Permutation Entropy

Measure chaos directly from data, without equations of motion?

Permutation Entropy:
Doesn’t need description of process
Simple algorithm
Fast
Robust to noise
Can get Shannon entropy rate of process in infinite limit

Data requirement grows quickly

Russell Hawkins (UC Davis) Group Meeting 5 / 30



Permutation Entropy

Measure chaos directly from data, without equations of motion?

Permutation Entropy:
Doesn’t need description of process
Simple algorithm
Fast
Robust to noise
Can get Shannon entropy rate of process in infinite limit
Data requirement grows quickly

Russell Hawkins (UC Davis) Group Meeting 5 / 30



Algorithm

Look at length n window

Rearrange elements in increasing order
Record permutation of elements
Repeat for all length n windows in time series

PE = Shannon entropy of distribution over permutations:

H∗n = −
∑
π

p(π) log2 p(π)

where π = set of all n! permutations
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A Simple Example

x = (5,8,10,11,7)

Windows of length n = 3:

(5,8,10): x1 < x2 < x3, permutation is 123
(8,10,11): x1 < x2 < x3, permutation is 123
(10,11,7): x3 < x1 < x2, permutation is 312

H∗3 = −2/3 log2 2/3 − 1/3 log2 1/3

H∗3 ≈ 0.92 bits
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Permutations Entropy Rate

Define
h∗∞ = lim

n→∞

H∗n
n − 1

For a broad class of systems,

h∗∞ = hµ

Permutations partition time series by relative values of neighbors
Derives partitions from the data itself
Side steps issue of finding generating partition
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Duffing Oscillator Permutation Entropy Rate

Focus on 1 degree of freedom (position)
Sample continuous time data with at least twice Nyquist cutoff
frequency
Compare with Kolmogorov-Sinai Entropy (largest Lyapunov
exponent)
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Duffing Oscillator Entropy Rate
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Permutation Entropy Rate vs KS Entropy Rate

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Frequency

0.5

1.0

1.5

2.0

2.5

A
m

pl
it

ud
e

Permutation Entropy

0.75

0.90

1.05

1.20

1.35

1.50

1.65

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Frequency

0.5

1.0

1.5

2.0

2.5

A
m

pl
it

ud
e

Entropy Rate

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

Russell Hawkins (UC Davis) Group Meeting 12 / 30



Permutation Entropy for 1-D Maps

To get a better grip on convergence properties, look at simpler
systems:

Tent Map
Logistic Map

Don’t need to worry about sampling frequency issue, hµ much easier
to calculate.

Russell Hawkins (UC Davis) Group Meeting 13 / 30



Tent Map h∗
n Convergence
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Logistic Map h∗
n Convergence
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Logistic Map h∗
n Convergence
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Tent Map h∗
n vs hµ
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Logistic Map h∗
n vs hµ

Russell Hawkins (UC Davis) Group Meeting 19 / 30



Permutation Excess Entropy

Defined analogously to standard Excess Entropy:

E∗ ≡ lim
n→∞

(H∗n − h∗∞ · n)

Converges to E for same class of processes for which h∗∞ = hµ

Length n approximate:

E∗n ≡ H∗n − hµ · n
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Wrinkle for 1-D Maps

1-D maps don’t have a unique Excess Entropy!
Different generating partitions give different EE values
All generating partitions converge to same hµ, but may differ in
how they converge

Which Excess Entropy does E∗ converge to for 1-D maps?
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Tent Map Binary Excess Entropy
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Tent Map E*
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Tent Map E*
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Logistic Map Binary Excess Entropy
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Logistic Map E*
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Logistic Map E∗
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Logistic Map E∗
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Conclusions

Permutation Entropy is cool!
Definitely captures qualitatively chaos/order in continuous time
systems
Wants to converge to hµ for 1-D maps
Takes its time in doing so

Permutation Excess Entropy is cool!
Tantalizing, raises more questions than it answers
Which Excess Entropy does it converge too?
Reflects what kind of partition permutations are
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