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Nanoelectromechanical Systems

Roukes group Nano Letters 2011

@ Sub-micron scale resonators
@ Mechanical behavior electrically measure/controlled
@ Subject to thermal fluctuations

We want to make Maxwell Demons with them!
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Nanobeams = Duffing Oscillators

@ Compress a beam, eventually buckles up/down
@ Can model bistable beam dynamics with Duffing equation
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Duffing Equation

X + X — ax + Bx3 = Geoswt

@ Interested in mapping behavior over parameter space
@ Also want to characterize behavior of experimental system
@ Exploring utility of Permutation Entropy
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Permutation Entropy

Measure chaos directly from data, without equations of motion?

Permutation Entropy:
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Permutation Entropy

Measure chaos directly from data, without equations of motion?

Permutation Entropy:
@ Doesn’t need description of process
@ Simple algorithm
@ Fast
@ Robust to noise
@ Can get Shannon entropy rate of process in infinite limit
@ Data requirement grows quickly
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I
Algorithm

@ Look at length n window
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I
Algorithm

@ Look at length n window

@ Rearrange elements in increasing order

@ Record permutation of elements

@ Repeat for all length n windows in time series

PE = Shannon entropy of distribution over permutations:
Hy=—=>_ p(r)log, p(r)

where 7 = set of all n! permutations
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I
A Simple Example

x=(5,8,10,11,7)
Windows of length n = 3:
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I
A Simple Example

x=(5,8,10,11,7)

Windows of length n = 3:
@ (5,8,10): x1 < X» < X3, permutation is 123
@ (8,10,11): x; < x2 < X3, permutation is 123
@ (10,11,7): x3 < X1 < Xo, permutation is 312

H; = —2/310g,2/3 — 1/3l0g,1/3

H; ~ 0.92 bits
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Permutations Entropy Rate

Define

*

h* = lim n
o0 nﬁoon—‘l

For a broad class of systems,
hi, = h,

@ Permutations partition time series by relative values of neighbors
@ Derives partitions from the data itself
@ Side steps issue of finding generating partition
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Duffing Oscillator Permutation Entropy Rate

@ Focus on 1 degree of freedom (position)

@ Sample continuous time data with at least twice Nyquist cutoff
frequency

@ Compare with Kolmogorov-Sinai Entropy (largest Lyapunov
exponent)
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Duffing Oscillator Entropy Rate

Entropy Rate
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Duffing Oscillator Permutation Entropy Rate

Permutation Entropy
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Permutation Entropy Rate vs KS Entropy Rate

Entropy Rate
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Permutation Entropy for 1-D Maps

To get a better grip on convergence properties, look at simpler
systems:

@ Tent Map
@ Logistic Map

Don’t need to worry about sampling frequency issue, h, much easier
to calculate.

Russell Hawkins (UC Davis) Group Meeting 13/30



Tent Map h7, Convergence

TentMapA=1.9
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Tent Map h7, Convergence

Tent Map A = 1.5
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Logistic Map h;, Convergence

Logistic Map r = 4.0
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Logistic Map h;, Convergence

Logistic Map r = 3.7
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N
Tent Map hj, vs h,

Tent Map Permutation Entropy Rate

02 — n=15|]
I h“
0.0 1 1 1 L
1.0 1.2 14 1.6 18 2.0
A

Russell Hawkins (UC Davis) Group Meeting 18/30



-]
Logistic Map hj, vs h,

Logistic Map Permutation Entropy Rate
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Permutation Excess Entropy

Defined analogously to standard Excess Entropy:

E* = lim (H: — k% - n)

n—oo
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Permutation Excess Entropy

Defined analogously to standard Excess Entropy:

E* = lim (H: — k% - n)

n—oo

@ Converges to E for same class of processes for which A% = h,

Length n approximate:

Ei=H:—h,-n
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Wrinkle for 1-D Maps

1-D maps don’t have a unique Excess Entropy!
@ Different generating partitions give different EE values

@ All generating partitions converge to same h,,, but may differ in
how they converge

Which Excess Entropy does E* converge to for 1-D maps?

Russell Hawkins (UC Davis) Group Meeting 21/30



-]
Tent Map Binary Excess Entropy
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Tent Map E*
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Tent Map E*
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Logistic Map Binary Excess Entropy
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Logistic Map E*
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Logistic Map E*
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Conclusions

Permutation Entropy is cool!

@ Definitely captures qualitatively chaos/order in continuous time
systems

@ Wants to converge to h, for 1-D maps
@ Takes its time in doing so

Permutation Excess Entropy is cool!
@ Tantalizing, raises more questions than it answers
@ Which Excess Entropy does it converge too?
@ Reflects what kind of partition permutations are
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