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Recent advances in design and implementation of Nanoelectromechanical Systems (NEMS) enable us to ex-
plore non-linear phenomena in unprecedented ways. In particular we can study the behaviors of non-linear
elements that are coupled together in simple network configurations. Here we consider NEMS that, with ap-
propriate feedback, act as nonlinear Duffing-like oscillators, allowing the dynamics of each oscillator to be
modeled by its slow-time envelope. In a network of coupled oscillators, these complex envelopes are coupled
via a diffusive term, with the real and imaginary parts of the coefficient corresponding to coupling of the os-
cillators’ velocities and displacements, respectively. We apply methods for the control of nonlinear systems to
these coupled NEMS oscillators. We focus on the existence of stable synchronized limit cycles and our ability
to guide the system between these attracting states via control of a small number of oscillators’ natural linear
frequencies.

I. INTRODUCTION

Control of complex networks is a subject with many
exciting application, ranging from power grid manage-
ment to drug target selection. Such networks tend to have
large numbers of elements connected by discrete links
and can therefore be represented by a network (graph).

Nonlinear network control is neither linear controlla-
bility nor statmech.

II. BACKGROUND

Roukes, et al. have developed NanoElectroMechan-
ical Systems (NEMS) with such varied applications as
¡current applications¿. Intended applications. They have
developed both beams and membranes with precise and
accurate physical parameters.

At the mechanical level, NEMS can be represented as
euler beams.

Euler −Bernoulli (1)

The deflection in the piezoelectric beam is recorded as an
electric potential. By filtering the signal, a single mode
of vibration can be isolated. So long as the nonlinearity is
sufficiently small, the notion of a linear vibration mode is
well founded and is represented by the standard oscillator
equation with a single nonlinear term. This system is
typically studied as driven by a periodic forcing function
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When the system is weakly damped and the driving is
appropriately weak and near to the system’s linear reso-
nance frequency, this system is characterized by fast os-
cillations within a slowly varying envelope. The separa-
tion of time scales is characterized by the frequency dis-
sipation Q. Additionally nondimensionalizing time by
a reference frequency ω near to the natural linear fre-
quency, the slow time variable is defined as T = ωt

Q . The
fast time scale oscillations are then factored out of the
dynamics, defining a slow time envelope A(T ).

x(t) = x0<
[
A(T )eiωt

]
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ω

Q
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This envelope A is complex and may be written as a real
magnitude and phase aeiφ. Upon substituting this so-
lution and expanding perturbatively in Q−1, the slow-
time envelope equation is derived by requiring that terms
leading to unbounded solutions (resonant driving of an
undamped system) must precisely cancel. In this deriva-
tion, the driving function takes the form gei(ωD−ω)t.
However, the NEMS of interest are not externally driven.
Instead, the resonators are driven by their own signal that
isolated and manipulated. By saturating this signal at a
particular magnitude, the driving function takes the form
1
2e
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With a self-driving feedback loop, the systems sus-
tain oscillations independent of any external power fre-
quency. This frequency independence distinguishes
limit-cycle oscillators from periodic resonators.

Coupling: Combination of signals and rota-
tion/diminishment of signal. some words about
dissipative coupling. Reactive coupling dynamics,



words, and envelope.

dAi
dT

= f(Ai) +
∑
j∈Ni

(Kij + iβij) (Aj −Ai) (5)

Two oscillators have been previously coupled elec-
tronically by the Roukes group. Figure 1 shows the
schematic for this set-up. In particular, the three colored
boxes represent the three free system parameters: ∆ω,
the natural frequency difference; α, the nonlinearity; and
β, the reactive coupling constant.

As of June 2015, eight NEMS have been fabricated
with the intent to build several coupling networks. (the
first two of which being complete and ring.)

III. DYNAMICAL SYSTEM

The particular system under study is that of eight iden-
tical oscillators reactively coupled in a ring topology as
represented in Figure 2. That is, each oscillator is re-
actively coupled to two “adjacent” neighbors. All natu-
ral frequencies are identical, so we choose all slow-time
natural frequencies to be zero. These conditions give the
following equation of motion for oscillator i, where the
indices are taken mod 8.
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The amplitudes and phases of each envelope can be iso-
lated, giving the following form.

dai
dT

= −ai − 1

2
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[ai+1 sinφi+1,i − ai−1 sin ∆φi−1,i]

(7)
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Noting that the governing equation depends on phase
differences, and not the phases themselves, as well as the
uniformity of oscillators, we expect the steady states to
have identical descriptors at each node. That is, we try
states where all nodes oscillate with the same amplitude
ai = a, and all coupling edges support the same phase
difference: ∆φi,i+1 = ∆φ. under these conditions,
the fixed amplitudes must be unity, and the amplitudes
must be integer multiples of π/4, such that 8∆φ = 0
mod 2π.

a∗i = 1 (9)
dφ∗i
dT

= α+ β cos
nπ

4
, n ∈ Z (10)

There are eight unique states of this prescription, enu-
merated in Figure 3.

Writing the amplitudes and phases as a combined 16
element vector, we linearize about an arbitrary point on
these limit cycles.
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There is at least one zero eigenvalue of the linearization
matrix, corresponding to the eigenvector (~0,~1 ) in the di-
rection of the limit cycle itself, as expected, which con-
firms that linearization of a non-fixed point on the limit
cycle is reasonably meaningful. For each of the eight al-
lowed ∆φ’s, the eigenvalues of this linearization allow
for classification of its linear stability: if any have a pos-
itive real part, the state is unstable; if the rest have neg-
ative real parts, the state is stable. If there are additional
eigenvalues with zero real part, then linear stability may
not correspond to asymptotic stability.

Combining the envelopes to a vector d ~A/dT = g( ~A ),
we see that the governing dynamic is equivariant with
respect to rotations of the complex plane.

deiθ ~A

dT
= g

(
eiθ ~A

)
= eiθg

(
~A
)
, ∀θ ∈ R (12)

Equivariant bifurcation theory should be able to be ap-
plied to help classify limit cycle stability, but I have not
yet worked out the details.

IV. METHODS

In these systems, control input is reasonably im-
plemented constrained to envelope phases. Oscillator
phases may be shifted experimentally by detuning the
natural frequencies very briefly. If the detuning occurs
over a time scale much faster than the slow time scale,
this corresponds to an instantaneous shift of the enve-
lope’s phase.

In these systems of NEMS, the physical energy of any
oscillator is incredibly low simply due to their size, so
minimizing an energy cost of the control signal is not
an immediately useful quantity. On the other hand, the
ability to implement such a phase kick of a single oscil-
lator has notable experimental overhead: calibrating yet
another “knob” of the system. As such, rather than con-
sider control signals that may affect all phases, we study
the ability to move between the known limit cycles by
controlling a small number of phases.

The ability to control from one state to another is quan-
tified by the fraction of available phase space that is in
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FIG. 1: Schematic of two reactively coupling oscillators, from Matheny, et al. PRL 2014

FIG. 2: Topology of Reactive Rings

the target limit cycle’s basin of attraction. If the rele-
vant basin slices are reasonably convex, then this fraction
corresponds to a sort of precision required of the phase
kicks in order to move to the target basin. This qualita-
tive assumption will need some quantified justification.
For now, the ability to move the system from a particular
limit cycle into the basin of another limit cycle is repre-
sented by an edge in a directed graph, weighted by the
discussed fraction of available phase space.

Basins of attraction were categorized by computer
simulation of the system dynamics up to a time cut off
at 1000 slow-time units.

V. RESULTS

At strong coupling, the most limit cycles are linearly
stable, so we start in that regime. The discovered net-
work is shown in Figure 4a. In phase synchronization:
∆φ = 0 is stable here, but the only other limit cycle
that can be reached by moving a single oscillator’s phase
is out-of-phase synchronization ∆φ = π. Once in this
limit cycle, no others can be reached. Starting in either
∆φ = ±π/2, the basin of ∆φ = π is not accessible.

With weak coupling, we can get from ±π/2→ π, but
only through ±π/4.

With weak coupling and control of the node oppo-
site on the ring from the first, we can get directly from
±π/2→ π.

Only with control of adjacent nodes’ phases can we
get to anything other than π from 0 or leave π.

VI. CONCLUSIONS

TBD.
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∆φ = 0 ∆φ = ±π
4

∆φ = ±π
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∆φ = ± 3π
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∆φ = π

FIG. 3: Caption

(a) Strong Coupling, Single Node Control (b) Weak Coupling, Single Node Control

(c) Weak Coupling, Opposite Node Control (d) Weak Coupling, Adjacent Node Control

FIG. 4: Caption
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FIG. 5: A map of basins of attraction of states ∆φ = nπ/4, centered at a point on the unstable ∆φ = π/4 limit cycle
(α = 0.3, β = 0.5) and slicing through the two phases of adjacent oscillators. The second plot is rather zoomed in

and gives strong visual evidence for fractal basin boundaries near this unstable limit cycle.
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