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Classical vs Quantum Finite State Machines

Stochastic Finite State Machine

Definition
A stochastic finite-state machine is a tuple {S, X , {T (x) : x ∈ X}}
where

I S is a finite set of states, including a start state.

I X is a finite alphabet.

I T (x) are substochastic matrices where T (x)
ss′ is the probability of

transitioning from state s to state s′ and emitting symbol x .

A stochastic deterministic finite-state machine is a stochastic-FSM
such that for every x ∈ X , any row of T (x) has at most one nonzero
entry (i.e. it is unifilar).
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Classical vs Quantum Finite State Machines

Quantum Finite State Machine

Definition
A quantum finite-state machine is a collection
{Q, 〈ψ| ∈ H, X , {T (x) : x ∈ X}} such that

I Q = {q0, q1, . . . , qn−1} is a set of n states.

I The state vector ψ ∈ H belongs to an n-dimensional Hilbert spaceH.

I X is a finite alphabet of output symbols.

I T (x) = U · P(x) is an n × n transition matrix that is a product of a
unitary matrix U and an orthogonal projection operator P(x).

I The projection operators are mutually orthogonal and satisfy
I =

∑
x∈X P(x).

A quantum deterministic finite-state machine is a quantum-FSM in which
each matrix T (x) has at most one nonzero entry per row (unifilarity).
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Classical vs Quantum Finite State Machines

Properties of Quantum Finite-State Machines

We impose the following constraints on our quantum finite-state
machines.

With each internal state qi , we associate with it the canonical
orthonormal basis vector ei = (0, . . . , 1, . . . , 0), which will also
serve as the eigenbasis for the mutually orthogonal family of
projections. That is,

P(x)ei = λiei , λi = 0, 1.

If λi = 1 then there is a transition into state qi that emits symbol x . By
mutual orthogonality, we know that all transitions into state qi must
emit symbol x .
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Classical vs Quantum Finite State Machines

Word Probabilites

We use the density matrix representation to establish word
probabilities. The stationary density matrix for any quantum-DFSM is
given by

ρ = |Q|−1I.

If w = w1w2 · · ·wk , then T (w) = T (w1)T (w2) · · · T (wn) and

P(w) = tr(T ∗(w)ρT (w)).
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Example

Beam Splitter '' '' ''
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The above beam splitter is modeled by:
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Example

Remove Detectors. . .
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If we remove every other set of detectors, interference occurs and the
stochastic-DFSM is longer a valid description of the process. However, the
quantum-DFSM still holds.

By noting that we are unsure of outcome of sites without detectors, we use

T (λ) = U(P(0) + P(1)) = U

to represent the unknown symbol at these sites. The probabilities

P(w1λw2λ . . .) = tr(T ∗(w1λw2λ . . .)ρT (w1λw2λ . . .))

correctly model the word distribution obtained after removing the detectors.
This produces
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An Approach to Build Quantum-DFSM

Constructing Quantum from Classical?

Strategy:

I Construct stochastic-DFSM with bistochastic transition matrix T .

I Check if T is unistochastic, if not, modify machine.

I Construct a unitary matrix U such that Tij = |Uij |2.
I Use classical machine associated with T to construct

quantum-DFSM.
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An Approach to Build Quantum-DFSM

Constructing Quantum from Classical?
Strategy:

I Construct stochastic-DFSM with bistochastic transition matrix T .
I Check if T is unistochastic, if not, modify machine.
I Construct a unitary matrix U such that Tij = |Uij |2.
I Use classical machine associated with T to construct

quantum-DFSM.
Helpful observations for constructing quantum versions of
stochastic-DFSM.

I Pr(x) = tr(P(x)U∗ρUP(x)) = rank(P(x)))
|Q| .

I Classical states with multiple incoming symbols must be split.
I Classical states with incoming probabilities which sum exceeds

one must be split.
I A state with an incoming edge with probability one must have

only one incoming edge.
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An Approach to Build Quantum-DFSM

Example: The Odd Process
Recall the recurrent component of the Odd Process has ε-machine:
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I Quantum-DFSM must have a multiple of five states.

I The ratio of ‘0’ states to ‘1’ states is 2 : 3.

I State B must split as the total probability exceeds one.
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An Approach to Build Quantum-DFSM

The Odd Process
At first glance, one might try. . .
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An Approach to Build Quantum-DFSM

The Odd Process
At first glance, one might try. . .
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However, this has transition
matrix

T =


0 1

2
1
2 0 0

1
2 0 1

2 0 0
1
2 0 0 1

2 0
0 0 0 0 1
0 1

2 0 1
2 0


which is bistochastic, but not
unistochastic. :(
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An Approach to Build Quantum-DFSM

The Odd Process
So we try again. . .
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An Approach to Build Quantum-DFSM

The Odd Process
So we try again. . .
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This has transition matrix

T =


1
2 0 1

2 0 0
1
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2 0 0
0 1

2 0 1
2 0

0 0 0 0 1
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which is both bistochastic, and
unistochastic. :D
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An Approach to Build Quantum-DFSM

The Odd Process
The quantum-DFSM for the Odd Process
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This has unitary evolution and
projection operators:

U =


1√
2

0 1√
2
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1√
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P(0) = |e1〉〈e1|+ |e2〉〈e2|
P(1) = |e3〉〈e3|+ |e4〉〈e4|+ |e5〉〈e5|
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