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Abstract
Cellular Automata offer a spacially and temporally discrete example of spacially-extended 

dynamical systems.  These are, at minimum, two-dimensional arrays of data.  Information measures are
best-developed for one-dimensional sequences of data, and therefor 1-D sequences must be extracted 
from cellular automata if such measures are to be applied.  Due to the inherent limit on the spacial 
extent of local state information for Elementary cellular automata for a single time step, some 1-D 
sequences of data can contain elements that were never in causal contact.  Cellular automata were 
generated for the Rule 18, Rule 30, and Rule 110 cases, and 1-D sequences were extracted along paths 
of different velocities.  Bayesian inference was utilized to estimate the entropy rate and statistical 
complexity of candidate ε-machines for each sequence, and these information measures were plotted 
against velocity.



Introduction

Motivation

Cellular Automata (CA) comprise a subset of dynamical systems which are the focus of much 
study.  Information metrics used to study such dynamical systems are most understood in one 
dimensional cases.  As CA are comprised of at least one spacial dimension as well as a temporal 
dimension, 1-D sequences of data must of extracted from them for analysis with conventional 
techniques.

Due to CA having limits on the spacial extent of influence in a single time step, some binary 
sequences extracted from the 2-D lattice consist of elements that were never in causal contact, whereas 
some sequences are.  This could potentially alter conclusions drawn from information analyses applied 
to such sequences.  I therefor study the changes in two information measures for selected CA.  

Why its interesting

Our own universe has a limit to the spacial extent of influence on an event given a set time: the 
speed of light.  This dynamic is shared with cellular automata.  I have therefor incorporated some 
terminology typically applied to physical spacetime discussions.  “Time-like” describes a path taken 
through spacetime which connects causally-connected events, i.e. a path with velocity less than the 
speed of light.  “Space-like” describes a path with velocity greater than the speed of light; these paths 
connect events that are not causally connected.

Though the “Elementary” CA studied here only one spacial dimension (1+1 dimensional) and 
our own universe has three (3+1 dimensional), studies of the differences between time-like and space-
like sequences of events could shed light on properties of our own spacetime.

Synopsis

In order to study these effects, 1000 x 1000 cell CA were generated from a uniformly random 
initial global state according to three different dynamical rules: 18, 30, and 110.  From this resulting 2-
D array, a single 1-D array of 0s and 1s was selected by picking a random initial cell at time = 1 and 
drawing a line through the CA.  The inverse slope of this path defined the “velocity” of the path. 
Bayesian inference methods were then applied to the resulting sequence to select the most likely 
generating ε-machines, which were then used to estimate the entropy rate and the statistical complexity 
for the sequence.  After averaging over several start-cells, the information metrics were plotted against 
the velocities of their sequences.

Rule 18 showed interesting structure for all velocities, with slightly different structure for 
timelike paths.  Rule 30 resulted in sequences best interpretted as unbiased coin flips for all finite 
velocities.  Rule 110 appeared as an unbiased coin flip for finite spacelike velocities, but showed large 
variety in structure for timelike paths.

Background

Cellular Automata

CA can be considered the simplest of spacially-extended deterministic systems.  Spacetime is 
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divided, in both the spacial and temporal dimensions, into discrete cells.  These cells can themselves be
in discrete states.  The number of states each cell can be in defines the alphabet size.  This paper 
explores the properties of binary (alphabet size of 2) one dimensional CA (one dimension of space and 
one of time).  The entire CA can be thought of living in a state space defined by all possible values for 
each cell at a given time.

The local dynamic which evolves the global state can be defined in many ways.  In the case of 
Elementary CA, explored here, each cell's evolution is depended on it's own past as well as that of it's 
neighboring cells.  Since information can only travel one cell away during one time step, we say the 
speed of light is 1.  These three cells, expressing a binary alphabet, yield eight unique configurations.  
How each of these configurations evolves is defined by the “rule” of the CA.  

Wolfram [1] enumerated these rules in the following manner.  The 8 possible configurations are 
arranged in reverse numerical order, and the central cell's time-evolved state is assigned to each.  The 
evolved states are then read like a binary number.  For example, the following dynamical rule is known 
as “Rule 18”:

111 110 101 100 011 010 001 000

0 0 0 1 0 0 1 0

Wolfram also categorized elementary CA into 4 classes.  Class 1 included CA that quickly 
homogenize; these were not studied in this project due to lack of features.  Class 2 CA evolve towards a
periodic pattern, and example of which is Rule 18:
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Figure 1: Rule 18: Space on the horizontal axis, time descending on 
the verticle axis.  Cell of state “0” are shown in black, state “1” in 
white



Class 3 CA evolve chaotically, and though they typically have transient small-scale structure, 
many aspects of their behavior is random.  Rule 30 is such a CA
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Figure 2: Rule 30



Finally, class 4 CA do not typically evolve to periodicity, but their small-scale structures do 
persist and move across the lattice, interacting with each other in complex ways.  An example of this is 
Rule 110:

For this project, one CA of types 2, 3, and 4 were analyzed.

ε-Machines

An ε-machine is a representation of a process that generates a sequence of symbols via a Hidden
Markov model.  Hidden causal states transition to each other according to a transition matrix T, and 
each transition emits a 1 or 0 in the case of our binary alphabet.  Specifically, of all Hidden Markov 
models that could generate an observed sequence, the ε-machine is the minimal machine [2].  For a 
given sequence of data, the generating ε-machines can be recovered in several ways.  For our analysis, 
Bayesian inference was utilized, and is further explained below.
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Figure 3: Rule 110



Methods
All work was performed in the Sage environment utilizing some prebuilt packages of the CMPy

server. 
The generation of a CA is straightforward.  The initial global state is created by randomly 

assigning each of 1000 cells a 0 or 1 with equal probability.  Each subsequent time step is generated by 
applying the dynamical rule of interest, until the desired length as been reached.  In our case 1000 time 
steps were calculated.  Periodic spacial boundary conditions are applied in order to determine the 
evolution of cells on the spacial ends of the lattice.  This produced a 1000 x 1000 lattice of cells.  CA 
were generated for rules 18, 30, and 110.

1-D binary sequences are then gathered from the CA by randomly selecting an initial cell and 
proceeding in a straight line through the spacetime according to a given velocity.  For example, a 
velocity of 0 selects a sequence from the same spacial position in each time step, while a velocity of 1 
moves to the right by one cell every time step.  Space-like velocities included the integers 2-10, as well 
as the “infinite” velocity of a horizontal sampling.  Time-like velocities were taken between 0 and 1, at 
steps of 0.1.

Once a sequence of data was isolated, the Bayesian inference methods from [4] were applied to 
find the most likely generating ε-machines.  First, all 1, 2, 3, and 4 state ε machines were considered 
with the prior distribution suggested in [4], with prior distribution parameter β = 4 to prefer less 
complex machines.  The data sequence was then used to discard those machines that were topologically
incompatible; if the sequence contained forbidden words for a given machine, that machine was thrown
out.

To observe any information differences in the ε-machines reconstructed from different velocity 
sequences, the entropy rate and statistical complexity were calculated.  For an ε-machine with 
transition matrix Tij, there is a distribution among causal states such that 

μi=∑
j

T i jμ j

This is known as the stationary distribution.
The entropy rate hμ measures the difference in uncertainty in the appearance of length L 

sequences and length L+1 sequences.  For a hidden Markov model, this can be calculated using the 
transition matrix and stationary state [3]:

hμ=−∑
i j

μi T i j log2(T i j)

The statistical complexity Cμ of a hidden Markov model is a measure of how “complicated” the 
connections between causal states are.  For example, a model with a single causal state has a statistical 
complexity of 0.  It can also be calculated from the stationary distribution [2]:

Cμ=−∑
i

μi log2(μi)

These information measures, chosen due to their ease of calculation, were found for 500 
different candidate ε-machines selected from the Bayesian posterior distribution.  These values were 
then averaged together to produce the estimate of hμ and Cμ of the sequence.
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The Bayesian inference and information measure calculations were repeated for sequences 
formed from 25 different starting cells in the CA, all of the same velocity, and the results from each 
sequence were averaged.  This average, as well as the standard deviation of these 25 samples, was 
plotted against the velocity of the sequences and is presented below.  Not considered was the Bayesian 
confidence interval for each hμ and Cμ measured.

Results
In the Rule 18 case, the left-right symmetry of it's evolution rules can be seen in the apparent 

symmetry under sign change of velocity in the information metrics.  The entropy rate has minima at 
velocities of 0 and ±∞, though small local minima exist at v= ±0.5.  All other spacelike paths result in 
fairly uniform entropy rate.  The statistical complexity demonstrates large uncertainty for spacelike 
paths, while timelike paths appear much less uncertain.  v = ±1 appears as minima, while ±0.5 once 
again seems to play an interesting role as local maxima.
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Figure 4: Results of analysis of Rule 18



For Rule 30, every path appears as  hμ =1 and Cμ = 0 (a fair coin flip), except the infinite 
velocity sequence.  It is interesting that the “class 3” property of randomness seems to extend to all 
paths that travel through time.
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Figure 5: Results of analysis of Rule 30



The final case, Rule 110, appears as almost a combination of the previous two results.  For 
spacelike paths of finite velocity, the information metrics show an unbiased coin flip, much like Rule 
30.  However, in both entropy rate and statistical complexity, the error becomes much larger for 
timelike sequences.

Conclusion
Velocity dependence on information metrics was observed, and this dependence was different 

for each of the three examined CA.  Common to all three CA, infinite velocities displayed different 
information metrics than other spacelike paths.  Our class 3 example, Rule 30, demonstrated 
randomness in all finite velocity paths, with no preference for space- or time-like velocities.  However, 
both rules 18 (a class 2 CA) and 110 (a class 4 CA) demonstrated a sensitivity to causality.  Rule 18 
shows less error in metrics derived from timelike paths, while the opposite it true for rule 110, which 
seems to contain many different ε-machines in it's timelike examples, but only one, the unbiased coin, 
for spacelike.
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Figure 6: Results of analysis of Rule 110
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