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Basic Problem
Previous Work

Using Information Theory to study Spatial Organization

Basic formulation of IT supposes a time series of data

In one space dimension, we don't have to change anything

Fundamental di�erence in higher dimensions: no shielding as
in �past/future�

Information can �ow however it wants!
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Previous Work

Some Methods

Cover lattice with a space-�lling curve to �nd 2D entropy
density (Lempel/Ziv 1986)

Computes a quantity well, but discards spatial data

Use a full dimensional �notch template� (Feldman/Crutch�eld
2002)

Presupposes a particular structure (optimality only shown for a
speci�c case)
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Basic Premise
Test Cases

Towards a Solution

Assumption: Spatially extended interacting systems
communicate along 1D paths

Consider all possible ways to parse a 2D grid into 1D paths, do
ordinary IT, and collect results

Block Entropies H(pL), Myopic entropy rates hµ(pL)
�Past/Future� Mutual information I (p

0: L2
;p L

2 :L
). Notation:

I (pL)
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Boring Cases

1x1 Checkerboard

Mutual Information = 1 for all paths

White noise - each site ±1 with equal
probability

Mutual information ∼ 10−3 for all paths
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Basic Premise
Test Cases

Lone Notch

Consider all paths visiting 4
sites

Max MI on dRL∼ rRL

Pathwise MI is maximized
across boundaries:

Second highest on paths
that follow the notch:
rLR ∼ lLR
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Basic Premise
Test Cases

Diamond

Eight of the 36 four-site
paths maximize mutual
information:

rLR ∼ uRL, dLR ∼ rRL,
dRL∼ lLR, lRL∼ uLR,
where ∼ denotes equality
after diagonal re�ection
MI spectrum could be
used to probe spatial
symmetries
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Basic Premise
Test Cases

10x10 Checkerboard

Mutual
Information for
each eight-symbol
path

Intriguing
�staircase�
structure - is there
some simple
reason for the
strong clumping?
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Symmetry

The group D4 has an
action on paths

How does this action
a�ect information
measures?
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Basic Premise
Test Cases

Quantifying Symmetry

What are meaningful computations to do? For example,

Consider a subset P of paths with similar MI, and �nd their
stabilizer; {f ∈ D4|f (p) ∈ P ∀p ∈ P}
For each f ∈ D4 compute 〈|I (p)− I (f (p))|〉
For each subgroup of D4, partition the paths into orbits, and
investigate how MI varies within orbits
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Basic Premise
Test Cases

Shapes with Partial D4 Symmetry

Checkerboard with 1x4
Blocks

Labelling: 1= Refx=−y , 2= Refx=y ,
3= Refx , 4= Refy , 5= Rot90,
6= Rot270, 7= Rot180
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Test Cases

(More) Shapes with Partial D4 Symmetry
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Breaking assumptions

Full-dimensional templates as opposed to paths - measure how
clumps communicate with clumps

Main di�culty: enumerating shapes. Could do with portions of
space-�lling curves, in the spirit of Lempel and Ziv

More dimensions / arbitrary networks

Main di�culties: path enumeration, larger/stranger isometry
groups

Inhomogeneous systems

Main di�culty: need many equivalent samples, and obtain MI
spectrum for every site
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