
Entropy Rate and Statistical Complexity for Dynamical
Neurons

Solveig Næss
solveig.nass@nmbu.no

June 2014

Abstract

�-machines can be used to study the dynamics of neural spike trains and reveal spiking
patterns. By constructing �-machines we quantify the randomness and structure of three
dynamical neuron models: The Linear Integrate and Fire neuron, the Quadratic Integrate
and Fire neuron and the Izhikevich neuron.

1

1 Introduction

The brain’s communication system consists of billions of neurons divided into large, compli-
cated networks. The communication between neurons and neural networks appears to be fast,
accurate and structured. But what exactly is structure? And can a sequence of action poten-
tials fired from a neuron be said to be a structured process, even though the neuron’s input
seems to stochastic? And how can structure be measured?

Computational mechanics provides tools for inferring structure from stochastic processes.[4]
Specifically we want to describe the neuron spiking models in terms of �-machines, and com-
pute the entropy rate and statistical complexity for each model. Section 2 and 3 describe
the dynamics of spiking neurons and give an overview of three specific neuron models: the
Linear Integrate and Fire model, the Quadratic Integrate and Fire Model and the Izhikevich
model. Section 2 will also explain what we mean by �-machines, entropy rate and statistical
complexity. Furthermore two methods for constructing �-machines are considered and used to
find entropy rate and statistical complexity for the three neuron models. In short, �-machines
are constructable for all 3 neuron models and the Izhikevich neuron model appears to have the
most structure.

The Python/ CMPy code used in the project can be found in the shared Sage worksheets.

2 Background

In most neuron models we’re interested in capturing the dynamics of the neuron’s membrane
potential. I.e. the voltage over the cell membrane due to differences in ion concentrations inside
vs. outside the cell. These dynamics are determined by complicated chemical processes in the
neuron, and can be described very accurately by the Hodgkin Huxley model. Here, the focus
will be on simplified models: the Linear Integrate and Fire Model, the Quadratic Integrate
and Fire Model and the more complicated Izhikevich Model. These models all capture how
a neuron’s membrane potential is changing because of inputs from other neurons. When the
membrane potential crosses a threshold value, the neuron fires an action potential, it “spikes”,
and the membrane potential decays back to a resting potential.[1]

The goal for this project is to find �-machines for the dynamical neuron models. The
�-machine is a type of unifilar, hidden Markov model of a process, given by the processes’
causal states and the state-to-state transition probabilities. Causal states are constructed by
grouping together histories that lead to the same prediction of futures. The e-machine is
a minimal, unique, optimal predictor and its graphical representation gives a good intuition
about a process’ dynamics in terms of randomness and structure.[4]

By computing the �-machines for these neuron dynamics we can also directly quantify the
randomness and the structure of spiking processes. We’ll calculate the randomness or uncer-
tainty of the spike trains in terms of entropy rate hµ:

hµ = −
�

σ∈S Pr(σ)
�

{x} Pr(x|σ) log2Pr(x|σ)[3]

Where S is the set of the causal states σ, {x} is the symbol alphabet, in our case {x} = {0, 1}.
Pr(σ) is the probability distribution of causal states and Pr(x|σ) is the probability of a causal
state σ emitting the symbol x.

The statistical complexity Cµ is a measure of how structured the process is, in terms of the
amount of information stored in the causal states.

Cµ = −
�

σ∈S Pr(σ) log2Pr(σ) [3]

2

3 Dynamical System

3.1 Linear Integrate and Fire Neuron

The Linear Integrate and Fire Model, LIF, is a simple model of a spiking neuron, easy to
understand by thinking of the membrane as an electric circuit, like the one in figure 1. Here
Cm is the membrane capacitance, Rm is the membrane resistance, Em is the resting potential
and I is the input current representing the input from other cells in the neural network.[1, 6]
Below threshold the membrane potential V is described by the following differential equation:

Cm
dV

dt
= −V − Em

Rm
+ I

if V ≥ Vthreshold, V → Em[1]

Whenever V reaches the threshold potential Vthreshold, V is reset to Em. We can think of
this as closing the switch in the circuit in figure 1. The input current is a constant value with
white noise added to describe the input from thousands of neurons. The voltage curve is shown
in figure 2. See caption for parameters.

Figure 1: Electric circuit representing the membrane in a Linear Integrate and Fire Neuron.
Cm is the membrane capacitance, Em is the resting potential, Rm is the membrane resistance
and I is the input current. [1]

3

Figure 2: Membrane potential V for the Linear Integrate and Fire neuron with noisy input
current I calculated by adding zero-mean white noise with standard deviation= 2 to constant
mean current = 2.2µA. The constants used are: Cm = 1µA, Rm = 10kΩ, Em = −70mV ,
Vthreshold = −50mV . [1]

3.2 Quadratic Integrate and Fire Neuron

The Quadratic Integrate and Fire neuron, QIF, is very similar to the LIF, the only difference
being the dynamics of the subthreshold potential, as you can see in the equation below. This
neuron is a more realistic model of the membrane potential close to the threshold.[1]

Cm
dV

dt
= − (V − Em)(Vthreshold − V)

Rm(Vthreshold − Em)
+ I

if V ≥ Vthreshold, V → Em[1]

Figure 3 shows the membrane potential of the QIF. We used the same input current and
parameters as for the LIF neuron. For more details see reference [1].

4

Figure 3: Membrane potential V for Quadratic Integrate and Fire Neuron with noisy input
current I calculated by adding zero-mean white noise with standard deviation= 2 to constant
mean current = 2.2µA. The constants used are: Cm = 1µA, Rm = 10kΩ, Em = −70mV ,
Vthreshold = −50mV . [1]

3.3 Izhikevich Neuron

The Izhikevich model is a more realistic version of the quadratic integrate and fire model,
consisting of two differential equations.

dV

dt
= k(V − Em)(V − Vthreshold)− u+ I

du

dt
= a(b(V − Em)− u)

if V ≥ 30mV:

�
V → c
u → u+ d

[1]

The first is describing the subthreshold potential and is almost identical to the quadratic in-
tegrate and fire dynamics, the only difference being a recovery variable u added to the right
hand side of the equation. The second equation determines the dynamics of the recovery vari-
able u. The recovery variable is added to describe the dynamics of ion channels which slows
down the growth of the membrane potential right after a spike. k, a, b, c and d are constant
parameters.[1, 5] For more information about these, see reference [5]. Figure 4 shows Izhikevich
voltage curves with and without noise.

5

(a) Constant input current I = 10mA

(b) Noisy input current I calculated by adding zero-
mean white noise with standard deviation= 8 to
constant mean current = 10µA

Figure 4: Membrane potential V for Izhikevich Neuron. Constants used in the calculation:
k = 0.04, Em = −70mV , Vthreshold, a = 0.02, b = 0.2, c = −65mV , d = 2. [5]

4 Methods

After generating voltage curves for the different neuron models we want to convert the voltage
output into a binary string. This is done by dividing the time axis into same size sample time
intervals. For each interval we check whether the membrane potential reaches its threshold or
not. If it does, a “1” is added to the string, if not we add a “0”. By choosing a sample time
significantly less than, but with the same order of magnitude as the mean spike time interval,
the binary string captures all spikes as well as the neuron’s inter spike intervals of the neuron.

In order to get a better understanding of the spiking processes, we use two different methods
to construct �-machines from the binary strings of each neuron model. The first involves
construction of parse trees, and the in the second we’ll use Bayesian Structural Inference.[2]

A parse tree labeled with output symbols, 0/1, and node-to-node transition probabilities on
each arc can easily be constructed from the binary strings. Now we want to define each node’s
causal state, by looking at future morphs. Future morphs are subtrees of a specified length

6

branching out from the nodes. Two nodes are in the same causal state if they grow identical
future morphs. Now the parse tree gives us causal states and the state-to-state transition
probabilities and we can construct an �-machine from the spike train.[8]

The parse tree method gives us a best estimate of a model limited by the choice of tree length
and the available data. By instead using the Bayesian Strucutural Inference (BSI) method, we
can consider a set of plausible model topologies, and calculate the probability of each topology
given the model set and a data string. [2] First of all we want to choose a set of plausible models
for the data. The binary string outputs from the neuron models considered here are basically
telling you how many zeros you see before you see a one. This dynamic can be modeled by the
renewal process. We will therefore use a library of renewal processes with different numbers of
states as our set of candidate models. After specifying our model set we can use the techniques
described in [2] to find a distribution of �-machines.

To quantify the uncertainty and the structure of the neuron dynamics, we compute the
entropy rate and the statistical complexity from the �-machines.

As described in the results, one advantage of using the Bayesian Structural Inference to
construct �-machines, is that we can use all of the considered machine topologies to compute
estimates of hµ and Cµ and their confidence intervals.

5 Results

We’ll start by looking at the �-machines constructed from the parse tree method. Tree length
used is 16 for all the models, and the morph length is 3 for all the models except the noisy
Izhikevich model, which has morph length 5. Note that the sample times used for constructing
�-machines for the different neuron models are not the same. Even though the length of the
binary string was increased by a factor 10, and tree and morph lengths were varied, I did not
succeed in finding �-machines that were not biased coins or running into dangling state errors.
The machines are therefore not directly comparable. See table 3 for comparable �-machines for
the different neuron models computed by using the BSI method.

Figure 5a shows the �-machine constructed from the noisy voltage data presented in figure
2 by using a sample time of 5ms. This was the smallest sample time I could use and get results
consistent with the binary string using the parse tree method. The results for the QIF-model
is shown in figure 5b. Here, the mean inter spike interval was smaller than for the LIF and the
smallest sample time giving consistent results was 3ms.

For the Izhikevich neuron I’ve constructed two �-machines to show the difference between
constant and noisy input current. The results are shown in figure 6 and 7 respectively. I’ve
used sample time 1ms for both of them. We can see that the added noise makes the mean inter
spike interval larger. It reduces the number of states, however the entropy rate and statistical
complexity are very similar.

Inter spike interval, sample time, number of states, entropy rate and statistical complexity
for each neuron are summed up in table 1.

7

(a) LIF: The same, but longer
voltage curve from figure 2 is
converted into a binary string
by using a sampling time 5ms.
Parse tree length used was 16
and morph length was 3.

(b) QIF: Same idea as in figure
5a), however the voltage curve
from figure 3 is used, and the
sampling time was 3ms. Same
morph and tree length.

Figure 5: �-machines constructed by using the Parse Tree Method.

8

Figure 6: �-machines for the Izhikevich model with constant input current constructed by using
the Parse Tree method. Binary input strings are constructed from extended versions of the
voltage curves in figure 4a). A sampling time 1ms and a tree length 16 and morph length = 3
are used.

9

Figure 7: �-machines for the Izhikevich model with white noise added to input current, con-
structed by using the parse tree method. Binary input strings are constructed from extended
versions of the voltage curves in figure 4b). A sampling time 1ms, tree length 16 and morph
length = 5 are used.

ISI [ms] sample time [ms] number of states hµ [bits] Cµ [bits]
LIF 25 5 5 0.49437 2.30937
QIF 11.11 3 5 0.38801 2.10647

Izhikevich without noise 6.25 1 29 0.42874 2.80775
Izhikevich with noise 5.88 1 8 0.37056 2.86471

Table 1: �-machines measures for the LIF neuron, the QIF neuron and the Izhikevich neurons
with and without noise are constructed using the parse tree method.

Using the exact same data strings as for the parse tree method, the �-machines in figure
8 and 9 are sample machines of the most probable models found using Bayesian Structural
Inference. The probabilities of these models are included in the figure captions. The prior
library consists of renewal processes with 1 to 30 states. The data shown in table 2 is including
estimates of hµ and Cµ and their 95% confidence intervals which are calculated from all 30
model topologies.

10

(a) LIF: �-machine topology
with the highest probability:
82.13%

(b) QIF: �-machine topology
with the highest probability:
99.55%

Figure 8: Bayesian Structural Inference computed �-machines for the Linear Integrate and Fire
and the Quadratic Integrate and Fire neurons. The samples shown here are drawn from the
distribution of transition probabilities for the most probable topology given by the Bayesian
Inference.

11

(a) Izhikevich neuron with con-
stant input current. Probabil-
ity of model topology: 95.7%

(b) Izhikevich neuron with
noisy input current. Probabil-
ity of model topology: 52.40%

Figure 9: Bayesian Structural Inference computed �-machines for Izhikevich neurons with con-
stant and noisy current input. The samples shown here are drawn from the distribution of
transition probabilities for the most probable topology given by the Bayesian Inference.

number of states E(hµ) [bits] CIhµ [bits] E(Cµ) [ms] CICµ

LIF 4 0.48014 (0.43881,0.52428) 2.03668 (1.95935,2.30853)
QIF 4 0.37226 (0.32474,0.43032) 1.97422 (1.95354,1.99050)

Izhikevich without noise 7 0.17601 (0.14641,0.21052) 2.72521 (2.58127,2.74930)
Izhikevich with noise 7 0.38790 (0.36964,0.40677) 2.77328 (2.75936,2.78553)

Table 2: �-machine measures for the LIF neuron, the QIF neuron and the Izhikevich neurons
with and without noise are constructed using the BSI method. Note that different sample times
are used for the different neurons. For the LIF neuron sample time I used 5ms, 3ms for the
QIF neuron and 1ms for both versions of the Izhikevich neuron.

When looking at table 1 and table 2, one can see some of the pros and cons for the parse tree
method and the BSI method. The parse tree method does not give us the confidence intervals
that we get in table 2. The hµ’s and Cµ’s in table 1 are constructed from only one �-machine
per neuron model, estimated by the parse tree. Because of the randomness from trial to trial
when constructing the voltage curve and the binary strings, the �-machines also vary from trial
to trial. However the Parse Tree Method does not require a candidate library and is therefore
easier to use. If the candidate library for the BSI really captures all possible models for the
data, using the library is a big advantage. Whether our renewal process library represents all
relevant topologies is hard to say. However in my work with the parse tree method, only renewal
process �-machines has appeared so far, which is indicates that our library is appropriate.

Since the BSI method does not run into inconsistent machines for small sample times, we

12

can use this method to construct comparable �-machines for the dynamics of the three different
neuron models. I.e. �-machines all constructed from binary strings where sample time 1ms is
used. The results are shown in table 3.

number of states E(hµ) [bits] CIhµ [bits] E(Cµ) [ms] CICµ

LIF 16 0.47972 (0.43530,0.52111) 2.03445 (1.96125,2.30682)
QIF 10 0.37219 (0.32454,0.42904) 1.97415 (1.95048,1.99089)

Izhikevich with noise 7 0.38790 (0.36964,0.40677) 2.77328 (2.75936,2.78553)

Table 3: �-machine measures for the LIF neuron, the QIF neuron and the Izhikevich neurons
with noise constructed by using the BSI method. Here the sample time used is 1ms for all
three neuron models.

When comparing the LIF, the QIF and the Izhikevich neuron models in table 3, it appears
that Izhikevich is the least random model, and that it also has the most structure with a
statistical complexity Cµ ≈ 2.77. For comparison a biased coin has 0 structural complexity.
The Almost IID process (see reference 0), which is a coupled set of biased coins has a statistical
complexity Cµ ≈ log2|S|, where |S| denotes the number of states.[9] A 7-state Almost IID
process has a Cµ ≈ 2.80 which is larger than but close to the statistical complexity of the
Izhikevich model machine with sample time = 1ms.

The QIF neuron model seems to have the least randomness. Note that the input currents
(and the amount of noise) for the Izhikevich model and the LIF/QIF models are not the same.

6 Conclusion

From the tables and figures in the results, it is clear that both the LIF, the QIF and the
Izhikevich neuron models are structured processes that can be described by �-machines. Among
the three the Izhikevich neuron model seems to be the most structured.

Since all these models are well suited for constructing networks of neurons, an interesting
next step would be to couple these neuron models together and look at how a neuron in would
respond to inputs from a network of neurons.

References

[1] STERRATT, D., GRAHAM B., GILLIES A. AND WILLSHAW D. Principles of Com-
putational Modelling in Neuroscience. Cambridge University Press, Cambridge, p.205-215,
2011

[2] STRELIOFF, C.C. AND CRUTCHFIELD, J.P. Bayesian Structural Inference for Hidden
Processes. Santa Fe Institute Working Paper 13-09-027 arXiv:1309.1392 [stat.ML], 2014

[3] CRUTCHFIELD, J.P. Between Order and Chaos. Nature Physics, Insight—Review Article,
DOI: 10.1038/NPHYS2190, 2011

[4] SHALIZI, C.R. AND CRUTCHFIELD, J.P. Computational Mechanics: Pattern and Pre-
diction, Structure and Simplicity. Journal of Statistical Physics 104, p.819-881, 2001

[5] IZHIKEVICH, E.M., Simple Model of Spiking Neurons IEEE TRANSACTIONS ON NEU-
RAL NETWORKS, VOL. 14, NO. 6, 2003

13

[6] IZHIKEVICH, E.M. AND EDELMAN, G.M. Large-scale model of mammalian thalamocor-
tical systems Proceedings of the national academy of sciences 105 (9), p.3593-3598, 2008

[7] IZHIKEVICH, E.M., Which Model to Use for Cortical Spiking Neurons? IEEE TRANS-
ACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 5, 2004

[8] CRUTCHFIELD, J.P. Lecture Note 22: The Learning Channel from PHY256B: Natural
Computation and Self Organization, 2014

[9] CRUTCHFIELD, J.P. Lecture Note 25: Measures of Structural Complexity from PHY256B:
Natural Computation and Self Organization, 2014

14

