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One of the main methods to study many body problem in numerical Physics is Monte Carlo sim-
ulation. Traditionally, in Condensed Matter Physics people have studied di↵erent thermodynamic
quantities and their temperature dependence. Big part of these studies is finding phase transitions.
Standard method that is used to find such a phase transition, which is usually named “critical
point”, is to study order parameter behavior. Problem is that for many systems it is not known
or does not exist. At the same time Monte Carlo simulation behaves di↵erent in the regions with
qualitatively di↵erent physical properties. In this work I am studying Ising Gauge model, it’s ther-
modynamic properties and compare it to the Information theory properties that were obtained from
the dynamics of the simulation. Further I study how excess entropy can be used as a natural order
parameter to find the phase transition temperature.

I. INTRODUCTION

People use Monte Carlo simulations to find numerical solutions for the problems that can not be solved analytically.
Main problem is that phase space grows exponentially and summation that is used to find the partition function can
be obtained only in several cases, where symmetries of the problem can help in some way. Power of the Monte Carlo
simulation is that it does not explore all of the phase space, but only it’s small subspace in which states have significant
probability. Temperature is one of the parameters of the simulations so it looks natural to guess that dynamics of
the simulation will depends on the temperature. And this is indeed the case. Much less trivial fact is that simulation
goes di↵erent in di↵erent physical regions. For example big problem of the simulations is “critical slowing down”,
meaning simulations explores the phase space very slowly in the vicinity of the critical point. Thus there is interesting
correlation between physics of the problem and nature of the simulation and goal of this project is to get some insight
in this correlation.

In this work I will use methods that are developed in the Natural computation and Information theory to analyze
the dynamics of the the Monte Carlo simulations for the 3 dimensional Ising Gauge theory.

Model is described by the Hamiltonian:
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FIG. 1: Red arrows - spins that are represented in the Hamiltonian as Si = ±1 values

Where S
i

= ±1 and sum is over the plaquets of the cubic lattice with periodic boundary conditions. See Fig. 1.
This model has local gauge symmetry which makes it impossible to use any local quantity as an order parameter to
find phase transition temperature. But at the same time this model can be mapped on the 2d Ising model that can
be solved analytically. And from this solution we know the exact value of the critical temperature T

c

= 1.3157. See
work1.

For a given set of the input parameters (lattice size in 3 dimensions: (n
x

, n
y

, n
z

), temperature T ) at each step
simulation either moves to the next state or stays in the same state. We can say that at each step we observe some
quantity, some observable. And this observable will be main object of the following analysis.
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II. SET UP.

Monte Carlo algorithm that generates the data.

A. Update algorithm.

One local lattice update:

1. Calculate energy for the current state E
old

2. Consider flipping random spin.

3. Calculate energy for the state with flipped spin E
new

4. Do this flip with probability p = 1
1+e

(E
new

�E

old

)/T

This local update is repeated (n
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d) times so that on average each spin is tried to be flipped once, where d = 3,
because I work with 3 dimensional lattice.

One lattice update will be done after we tried to flip on average each spin of the lattice, i.e. One lattice update =
dn
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⇥ local update.
First I do 10000 lattice updates without taking any measurements. This moves system to the thermal equilibrium.

After this I do 4000 lattice updates, measuring energy at the end of each try of the spin flip. And this leads to the
34 ⇥ 4000 = 324000 measurements.

B. Parameters of the simulation.

Measurements that I do during simulation allow me to find thermodynamic quantities using following identities:
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To do the Natural computations analysis I needed to choose what will be my measurement alphabet. Algorithm
complexity grows exponentially with the alphabet size, so I was forced to choose minimal non trivial alphabet size –
2. I think there are di↵erent ways to choose it but in this work I was doing it in such a way:

• We go to the next state(we flip spin) =) 1

• We stay in the same state(we do not flip spin) =) 0

Thus we obtain

. . . 1111011110001100000000101010011011011011011 . . .

This series of 1 and 0 presumably looses all information about the energy, magnetization, etc(For example all
changes in the energy as �8,�4, 4, 8 give you same number 1 in this time series), but it will keep dynamics of the
simulation.

To infer ✏-machines I used Bayesian inference with [1, 2] state systems.
For some temperatures I do several simulations with di↵erent random number seeds and in this case results are

averaged to get smaller errorbars.
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III. THERMODYNAMIC RESULTS

FIG. 2: Energy versus temperature for 10000 thermal and 4000 measurement sweeps for the cubic lattice with shape (3, 3, 3).

FIG. 3: Specific heat versus temperature for 10000 thermal and 4000 measurement sweeps for the cubic lattice with shape
(3, 3, 3). Black vertical line - critical temperature value.
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IV. INFORMATION THEORY RESULTS.

FIG. 4: Thermodynamic entropy S, entropy rate hµ and statistical complexity Cµ versus temperature for 10000 thermal and
4000 measurement sweeps for the cubic lattice with shape (3, 3, 3).After preforming numerical integration entropy curve was
shifted that it’s value will be equal to zero when T ! 0 and after this scaled that it will be equal 1 at T ! 1

As we can see h
µ

and C
µ

coincide and what is remarkable they are very close to the thermodynamic entropy S,
which was obtained using numerical integration.

FIG. 5: Excess entropy versus temperature for 10000 thermal and 4000 measurement sweeps for the cubic lattice with shape
(3, 3, 3). Black vertical line - critical temperature value.

It looks like peak in the excess entropy is at the same position as a specific heat peak, so may be this excess entropy
singularity is at least as good signature of the critical point as the specific heat peak.

V. CONCLUSION.

This statements can be a bit powerful, but still:
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• Entropy rate h
µ

and statistical complexity C
µ

of the Monte Carlo simulation are equal to the thermodynamic
entropy of system that this Monte Carlo simulates.

• Excess entropy can be used as a natural order parameter to find phase transition temperature.

VI. QUESTIONS THAT ARE RAISED BY THIS WORK.

• How does these results will change if we will work with larger systems?

• Are results of this work is just an accident or they will hold for other systems also?

• Will excess entropy that worked here for the second order phase transition will work that well for the first order
or KT transition?

• Does this approach work only for spin systems or it will also work for the fermionic/bosonic systems?

• Is the method an improvement? Eg for some known phase transition can one get some interesting observables
(Tc, exponents,...) to higher accuracy or with less computer time?

• Is there a model where we do not know whether there is a phase transition or not that we can try?

• Is this useful for the sign problem in some way?
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