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Pulse Coupled Synchonization
and Scheduling

Reinhard Gentz, Lorenzo Ferrari and Anna Scaglione

Abstract—We propose an architecture that provides decentralized synchronization and scheduling, using a network synchronization
protocol that is inspired by the dynamics of pulse coupled oscillators PCO. This provides time division multiple access, for a self-
organized clustered network in which cluster-heads can obtain data from all the client nodes in the cluster with bounded delays.

Index Terms—Pulse Coupled Oscillators, distributed time scheduling, clustered networks.
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1 INTRODUCTION

Data acquisition is ubiquitous in sensor networks (SN),
and it consists of the regular sampling of analog mea-
surements as well as digital variables, recorded by field
devices and programmable logic controllers.

As SN have grown in size and complexity, it has
become prevalent to use packet switched network to
connect field devices and sensors, multiplexing the same
communication media for a number of control and mon-
itoring functions. Some applications in SN are particular
time sensitive: they require accurate time-stamping of
information over multiple sensors, ensuring a bounded
data delivery latency. In principle, what the system
should emulate is the model of an ideal sensor array
where the field devices sample the physical system syn-
chronously. In practice, each individual sensor will have
a local sampling clock, which has to be synchronized.
One application for that could is state estimation, e.g. in
the power grid.

Typically the need for network synchronization and
rapid access to the communication medium are ad-
dressed through out of band control channels or mes-
sage exchanges, with timing coming prevalently from
a Global Positioning System (GPS) receiver. In band
network synchronization protocols, such as, for instance
the Precision Time Protocol (PTP) [1], use instead the
same communication medium to establish a common
clock. However GPS-Signals can bee spoofed [2] and PTP
is not immune to cyber attacks.

Today, shared media (wireless) solutions like WiFi or
Zigbee, are inherently asynchronous. Network access
conflicts are prevalently resolved through Carrier Sens-
ing Multiple Access. In applications with large num-
ber of sensors with slow duty-cycles Time Division
Multiplexing (TDM) has advantages over other multi-
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plexing methods, as nodes can have both transmitter
and receiver in sleep mode while their wait their turn,
conserving energy, therefore especially useful for battery
powered devices.

TDM solutions which address the need to bound de-
livery latency are also emerging but in general found to
be NP-hard [3]. Several papers proposed heuristic solu-
tions for TDM scheduling, aimed at allocating regularly
a portion of a time frame to each node while meeting a
given criterion of fairness (e.g. max-min fairness in [4]) .

To do scheduling, protocols such as the USAP [5] and
the DTSAP [6] use a message-passing approach, while
DRAND [7] and the method in [8] formulate the time
scheduling problem as an instance of graph-coloring
problem. The main drawback of TDM scheduling algo-
rithms is that, not only they often depend on preceding
synchronization, but have the need for global control in-
formation (such as the nodes’ ID, destination, neighbors,
data rates etc.) which needs to be exchanged over two
additional channels, one for synchronization and one for
control signaling (presumably a random access channel)
prior to eventually assigning a portion of transmission
time (or a non-conflicting color) to each user in the trans-
mission channel. The adaptation to changing channel
and traffic condition is cumbersome. Their large over-
head and lower resilience compared to random access
protocols clearly makes them less competitive, even in
sensing applications that require to meet deterministic
deadlines. In the mentioned protocols do not provide,
but instead rely on out of band synchronization.

2 SYSTEM SETUP

In this section we describe the goals of the protocol
and the models used in the implementation. The goal of
this protocol is to provide easy to deploy decentralized
synchronization and scheduling, archiving proportional
fairness among the member regarding the distribution
of scheduling time. This means that a node with a
high demand in communication will receive a greater
share of the available transmission time. We also want
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to emphasize the fact that are proposing a decentralized
scheduling algorithm, allowing easy scalability. In addi-
tion this protocol is also designed to limit the possibilities
and damage potential of a rogue node or attacker to the
nodes the attacker is directly connected to, and make it
hard for an attacker to propagate wrong or misleading
information through the network. The allowance that an
attacker can disturb the nodes he is directly connected to
is very reasonable in a shared media, as one option for
an attacker would be to jam the shared medium, making
any communication in range of the attacker impossible,
however any communication outside of the jammed area
is working normally.

The medium we are using this protocol is shared, In
order to avoid collisions, we need to ensure that multiple
nodes are not interfering each others transfers, especially
we need to take care of hidden stations,for with we
are introducing cluster heads (CH). Similar to the IEEE
802.11 standard transmissions are only allowed from
and to the CH. In addition each transmission requires a
clear-to-send packet (start beacon s) and ready-to-send
packet (acknowledge ack) pair, which ensures that each
node is aware of hidden stations. We assume nodes are
connected in a mesh network, consequently it is possible
for nodes to be connected to multiple CH, we call these
nodes shared-nodes. In contrast there are nodes which
are only connected to one CH and are called non-shared-
nodes.

We are opposing a cross-layer protocol connecting the
physical layer with the medium access layer. In fact we
are using the arrival time of a signal to estimate the
internal clock of the transmitter. The accuracy we can
archive with this method is limited by the bandwidth
and the signal to noise ratio (SNR) as described in sec.5.
For our model we are assuming the usage of wireless
communication with the physical specifications of the
Zigbee standard: 2.4GHz center frequency with x MHz
bandwidth, using a transmission power of 30dBm with
an omnidirectional antenna. We are modeling the link
between nodes using the Okumura-Model[10], assuming
an urban environment.

3 THE CODTM PROTOCOL

3.1 Definition of communication

In the communication system each node has its own local
clock, the following assumptions are explained within
this paragraph: 1) We define without loss of generality
that this clock can be separated in a continuous part of
length TPCO and a discrete part of length L, further let
us assume that the continuous part has a length TPCO =

1, i.e. time is normalized with respect to the period of
the clock used for network synchronization. 2) Let us
assume that that the frame duration for data packets is
is large and contains several multiples of TPCO. 3) We
assume that there are three kind of beacons and each has
duration strictly less than 1/2 of TPCO.
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Fig. 1. Decomposition of the phase variables �u(t) into
discrete and continuous parts.

We can model assumption 1), the time of the node u

as the following phase variable:

�u(t) = (t� �u)

L

TPCO
(mod L), (1)

where �u 2 [0, T ) represents the time offset between
different nodes with respect to a virtual periodic time
reference1. This reference can �u(t) 2 R, however due to
the modulu operation will can find �u(t) 2 [0, L) instead.

We further can model assumptions 2) and 3) as the
phase variable can be decomposed uniquely as discrete
and continuous modular components:

�u(t) = �

(d)
u (t) + �

(c)
u (t)

= (b�u(t)c (mod L)) + (�u(t) (mod 1)) . (2)

If L 2 N, then �

(d)
u (t) =

⌅
(t� �u)

L
T

⇧
(mod L) is in

the set L = {0, 1 . . . L � 1}, and can be denoted as the
current time slot which node u is experiencing. Also
�

(c)
u (t) 2 [0, 1) represents the continuous changes of

the phase between consecutive increments of �

(d)
u (t).

Fig. 1 illustrates how �u(t) can be decomposed into the
discrete �

(d)
u (t) and continuous �

(c)
u (t) phases. This can

be seen as a phase evolution of a nested clock within a
discrete clock which is represented by the discrete phase.
Each completion of a period in the continuous clock,
will increase the discrete clock by one unit. Another
way to look at the interaction of these two parts is the
relationship between minutes and hours in a regular
clock dial.

In order to have a reliable communication between the
regular nodes and cluster-heads, we divide each PCO
period in two non-overlapping portions: Uplink (UL) and
Downlink (DL) as shown in Fig. 1. It is assumed that
UL can only be used by nodes for sending beacons and
data packets, while DL can only be used by CH for
acknowledging beacons or sending data packets through
the medium. In general UL and DL can differ in their
durations, depending on the data send in the UL such
that for a value 0 < � < 1, UL occupies � and DL
occupies (1 � �). For simplicity in the following we

1. It should be noted that nodes do not have access to the value of
�u, as it is a virtual reference to show the state of synchronicity in the
network.
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assume � = 1/2. In our model we assume that each node
has two internal timers, denoted as start and end clock,
who both share the continuous part denoted as follows:

�

s
u(t) = su(t) (mod L) + �

(c)
u (t) (mod 1)

�

e
u(t) = eu(t) (mod L) + �

(c)
u (t) (mod 1)

However as CH are only responding to requests from
nodes they do not need a start and end clock but instead
use (2) as a time reference for all of their operations.

In the following subsections we explain

Fig. 2. Block scheme of a node

3.2 Synchronization Update
So far we have assumed that time grids in different
regular nodes and cluster-heads are aligned. However,
since there is not any communication scheme in other
network layers, nodes are not necessarily synchronized.
In this part we discuss an updating procedure which
gradually achieves time synchronization. Previously, the
protocol was described based on the periodic emission
of start, end and ACK beacons through the network.
Although initially these signals are not sent aligned to
a synchronized time grid, but all of them are emitted at
the starting edge of the UL or DL time slot of the sender.
Thus, at the receiver, time of arrival of the detected
signal indirectly represents the misalignment between
the receiver’s and transmitter’s time grids. In order to
compensate these time differences, a PCO update as
described in Section ?? is performed: Upon receiving a
Start/Ack beacon-, or End/Ack beacon pair each Node2 ,
exempt the node initializing this communication, update
their continuos time with

�

(c)
c (t

+
) = min{(1 + �)�

(c)
c (t), 1}. (3)

for the coupling factor � > 0. In general we want to
choose the coupling factor as large as possible to allow
fast convergence. However as shown in [11], � large
creates instabilities, depending on the network structure.

2. This algorithm also works when a node misses some beacon pairs,
due to interference, or shutdown of the Rx module in order to save
energy.

We noticed that based on our simulation that � has to
be smaller the larger the network is. We suspect this
is because time updates require more time to reach the
other end of the network.

3.3 Scheduling Update
As shown in [12] for an all-to-all connected network the
PCO-inspired scheduling update lead to a demand bases
fairness, assigning each node u a communication time
according to their demand Du compared to the networks
total demand. We use the the same update mechanism
and will show that the properties also hold for non fully
connected networks.

We define a nodes predecessor (pre) and successor
(suc) as following: pre(u) is a node, among all the nodes
which conflict node u, which has sent out its end beacon
right before node u. suc(u) is a node, among all the
conflicting nodes with u, which will be sending its start
beacon right after node u. This is visualized in Figure 3.

The update for the discrete time part is done at each
node u, only when receiving a start/ack beacon from
the nodes predecessor. This node then performs the
following, using an intended guard distance � between
the nodes. All calculations in this paper for the discrete
scheduling part are modulus the global amount of time
slots, which we assume given.

s

target
u (t) =

�

Du + 2�

su�1(t) +

Du + �

Du + 2�

eu+1(t) (4)

e

target
u (t) =

Du + �

Du + 2�

su�1(t) +

�

Du + 2�

eu+1(t) (5)

Which shows the target value of s and e. It is worth
mentioning su�1(t) is 0 at the time of firing. In the
equation � acts as a guardspace between the nodes,
which is intended to be left empty. This acts as an entry
point for new nodes and as an indication to other nodes
about the internal demand.

Then the update is performed by moving the local
start and endpoints towards the target:

su(t

+
) = (1� ↵)su(t) + ↵s

target
u (t) (6)

eu(t

+
) = (1� ↵)eu(t) + ↵e

target
u (t) (7)

Where ↵ 2 (0, 1). However as shown in [12] it is possible
that two nodes can change order with this mechanism.
Therefore we alter our approach to:

s̃u
target

(t) = min

✓
s

target
u (t),

su + eu+1

2

◆
(8)

ẽu
target

(t) = max

✓
e

target
u (t),

su�1 + eu

2

◆
(9)

The fix point is not altered by this mechanism, as shown
in [13] it limits the maximum changing amount in order
to avoid overlapping. Numerical simulations show that
convergence properties are not affected.

The update equation shown in the right of (6) is not
necessarily a discrete value in L = {0, 1, . . . , L� 1}, and
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u

Fig. 3. In a network with three clusters, and node u

which can hear all cluster-heads, definitions of pre(u),
suc(u), �pre(u) and �suc(u) are shown in this figure.
The horizontal axis shows the values of discrete phases
(�(d)

u (t)).

thus should be projected into L again

su(t

+
) = Q[(1� ↵)su(t) + ↵s

target
u (t)] (10)

eu(t

+
) = Q[(1� ↵)eu(t) + ↵e

target
u (t)] (11)

where Q(·) is a quantization function. We use dithered
Quantization [14] defined as follows

Q(x) = round(x + v) (12)

where x 2 R and v ⇠ unif(�1/2, 1/2) is drawn from a
uniform distribution. The idea is analogous to the proba-
bilistic quantization used in [15] to ensure the convergence
of an average quantized consensus policy. Convergence
analysis of dithered quantization in discretized DESYNC
with only one cluster and synchronized nodes can be
found in [16].

3.4 State transitions in nodes and cluster heads
Each node is executing a program shown in the Fig. 4.
Similar to the PCO based methods in [?], each node u 2 V
sends out a firing beacon in the UL whenever its timer
expires as seen in state transition from state 1 to 2. Then
the node waits for an acknowledge from the CH and
upon receiving the the mentioned, the node knows that
the channel is free to use and starts transmitting data
(3). Once the node’s end timer times out then the node
will stop transmission of data an send an end beacon.
The CH will acknowledge this end beacon (4) and the
node is now ready to update its timing information (5).
This is done upon receiving the start beacon of the next
node, which is acknowledged by the CH then the node
updates their timing based on equation (??). However for
this equation we need the distance from the nodes start
node to the nodes precessing’s node end node. Therefore
a node is using the saved value from (6). There the node
is constantly monitoring the the network and recoding
the distance from its start beacon to the end beacon of
its precessor. However as all end beacons are the same
the node will take the last end beacon it heard as a
reference, which is the desired node, the precessor. In
(6) in addition to saving the processors position the node
also can use each acknowledged start and end beacons
to update the continuos time (3) as updating it does

not interfere with the scheduling algorithm, therefore
archiving faster convergence.

In the case of an error of the CH not acknowledging
a beacon the node will go to state 6 and has to change
his behavior. At the first time entering state 6) the node
will reduce its time from start to end beacon to the
minimum, resulting in a low overlapping chance. And
then enters (2) as normal. If this reduction was successful
on the next firing the CH will acknowledge and we
successfully solved the problem. However in case the
minimal distance is still not acknowledged the node has
to reconnect to its CH, as backing up to the maximum
has not brought the expected result and the easiest way
is to rejoin the network as described in section 7.

One possible extension to this protocol is to add an
power saving idle state, with both rx and tx shut down in
between (5) and (1), as for the scheduling only the very
last end beacon, the one from the precessor is of interest,
reducing power consumption. The disadvantage of this
approach is that we a) need to make sure we turn on
the rx in time to receive the precessor end bean and b) it
will slow down convergence of the continuos time part.

Fig. 4. State transitions in nodes

Fig. 5. State transitions in cluster heads.

A CH acts as the coordination center of a cluster the
CH has to acknowledge beacons whenever the media
in the cluster is free and deny/do not ack. if the media
is busy. Fig.5 describes the state flow of a CH. Initially
the CH is idle waiting beacons and joining requests (1)
and monitoring the network saving the current usage
in his memory. Uppon receiving a start beacon the CH
checks if the media is already in use. If not the beacon is
confirmed with an acknowledge and the media is set to
busy. In case the media is use no ack. is send and in both
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cases the CH goes back to the idle state. Uppon receiving
an end beacon the CH will always confirm it and mark
the media as free. We now describe the CH view of a
node joining the network, while a node’s view on joining
the network can be found in section ??. Uppon a new
node joining the network the CH searches its memory
for a free space to join. Depending if the new node is a
non-shared node or a shared nodes, the CH will place
the node at a new position or keep the nodes position for
the reasons described in [?]. In general non-shared nodes
should next to other non-shared nodes, while shared
nodes should be next to other shared nodes, if possible
even sharing the same other cluster. However as for a
shared node two CH are involved only the first CH can
set the position while the second node has to accept the
position as is. Therefore if the CH want to enforce that
the new shared node does not spit the existing sorting
the only thing a CH can do is restart its own local nodes
be next to each other, by denying the nodes beacon
requests forcing the nodes into a reconnect.

4 HOW A BEACON IS DESIGNED
We now specify how a beacon is generated and what
physical shape it has. The goal of the beacon is to have
the smallest timing error, ⌧

2 as described in the next
section (16) as possible. Therefore we have to maximize
the SNR and the mean square bandwidth (MSB). It is
beneficial to transmit more than one symbol per beacon
as we can combine the Signal-power of each symbol. To
do this we prefer find a sequence with the maximum
autocorrelation peak-to-side lobe p ratio possible and
each symbol using the maximum transmission power.
Mean that each transmitted symbol has to lie on the unit-
circle of the Inphase & Quadrature Phase. However we
also require a large mean square Bandwidth. In other
words, this means that a beacon is a synchronization
sequence as in communications. Therefore we are using
industry standard sequences, in our case the Zadoff-Chu
Sequences, which are also used in LTE-Wireless, which
have excellent properties in a power line channel, which
is typically characterized by multi path propagation due
to signal reflection and impedance mismatches.

When sending a beacon we say that we have one
discrete time slot to send the beacon and receive the an-
swer from the CH. Considering the time needed for the
signal to travel the response in the CH being computed
and send back we find that a beacon has the maximum
length:

Bl = b (1� tc � tt � te)g

2L

c (13)

where tc is the computing time, tt the round-trip-
traveling time, te the error in round-trip-traveling time
and g a guard factor.

The sequence is generated with the following function:

a(k) =

(
exp jµ⇡k(k + 1 + 2q)/Bl , for Bl odd.

exp jµ⇡k(k + 2q)/Bl , for Bl even.

(14)

Where a(k) = 0, 1, . . . , Bl � 1 is the sequence of the
symbols we want to transmit. The parameter µ is an
integer prime to Bl.It is shown in [] that two sequences
with the same parameters but different µ, i.e µ1, µ2, are
orthogonal to each other if |µ1 � µ2| is also prime to
Bl.The parameter q 2 Z is an offset parameter, we choose
to be 0. It is interesting to note that this code will always
have an amplitude of 1, therefore uses the maximum
transmission power. We use the fact that we can choose
µ to encode information in the beacon, in our case if it
is a start or end beacon or if its an acknowledge from a
CH. This idea originates from the LTE network, where
multiple base station include their ID number in the
signal.

Zadoff Chu sequences have good autocorrelation
peak-to-side lobe as seen in fig.6. In addition this code
has a flat spectrum [?, ] This has several benefits: First it
has a large mean square bandwidth, which reduces the
error made in estimating time. Second the flat frequency
characteristic is useful in transmissions, as regulation
authorities only allow a certain energy per Hz. Therefore
since we have a flat frequency use the same maximum
transmission power. In addition the flat frequency can
be used at the same time to estimate the channel.
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Fig. 6. Autocorrelation of the Zadoff-Cru-Code with length
255, normalized to 1. We see that the code has a peak-
to-sidelobe ratio of ⇡ 15dB.

This peak-to-sidelobe ratio is equal to:
SNReff/SNRsymbol. Therefore we found the effective
SNR of the sequence, this we use in the next section to
compute the timing error of a beacon.

5 TRAVEL TIME ESTIMATION OF SIGNALS
In previous papers the system was assumed to have
infinite signal traveling speed without any uncertainty
(jitter). In the following we assume a finite noisy trav-
eling speed, which is determined by the distance of the
nodes to each other plus an additional signal processing
time, which is assumed to be known. This is a reasonable
assumption since the processor type and therefore pro-
cessing latencies are consistent, and therefore assumed
to be known by each node.

The algorithm works as seen in figure 7. Node i sends
a beacon with his time t1. This signal is received by the
CH and all other nodes in communication range sharing
the same CH, denoted as node j. The CH replies this
signal back to node i, but this answer is also received
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Fig. 7. Estimation of the link latency from a Node i to the
CH and all other nodes denoted as Node j. Solid Line:
Beacon transmission and corresponding times; Dashed:
Data-flow

by node j. From the traveling time to the CH and back
and the known computing time tc in the CH, node i can
compute its distance to the CH. This information is then
broadcasted though the system. Out of this information
the CH and node j are able to compute the time t1

the original transmission time of node i, given that
node j knows its distance to the CH from a previous
measurement.

However in the physical measurement each signal
(and therefore our timing information) arrives with a
certain error e because a perfectly sharp delta impulse
resulting in perfect time resolution , is not reasonable
since it would require infinite bandwidth (see [17] chap-
ter 3). In this book the time of a signal arrival is given
by:

trx = ttx + ttr + e (15)

where ttx and trx the transmit/receiving time and ttr

is the noise free signal traveling time, calculated as the
distance divided by the speed of the signal (speed of
light in air/media). With e the time estimation error.
We model the distribution of ej(ti) as N (0, �

2
j ), with �

2
j

equal to the Cramer-Rao-Bound for time estimation in
Gaussian white noise, which we assume is achieved by
the receiver estimator (see e.g. [17] Ch.3):

�

2 � (SNR(i,j) · ¯

F

2
)

�1 (16)

Here SNR(i,j)eff is the effective signal-to-noise-ratio
of the beacon from node i to node j as derived in the
previous section and ¯

F

2 is the mean square bandwidth
of the firing signal envelope s(t):

¯

F

2
=

R1
�1(2⇡F )

2|S(F )|2dF

R1
�1|S(F )|2dF

(17)

where S(f) is the Fourier transform of the firing signal
envelope s(t). As our beacon is generated by a Zadoff-
Cru sequence it has maximum bandwidth. Therefore ¯

F

2

only depends on the pulse-shaping filter of the trans-
mission system, which is typically a root raised cosine
filter.

We can write the expected absolute value of timing
error for an efficient receiver reaching the Cramer Rao
bound can be written as:

E(|e|) = �

r
2

⇡

(18)

This knowledge is now used in the following algo-
rithm to compute the timing error when nodes commu-
nicate with the PCO-Protocol. We denote the estimate of
a time with t

e while the true value has no index.
We can find the estimated travel time is the following,

given that the computation time t3 � t2 is common
knowledge among the nodes.

t

e
i,ch =

t4 � t1

2

� (t3 � t2) = ti,ch +

ei,ch + ech,i

2

(19)

We can extend this to find the relation

t

e
i,j = t5� t1 =

t5� t6 + ti,ch + tch,b +

ei,ch � ech,i � ech,j � ej,ch

2

+ ech,j2

(20)

The distance ti,j has the additional error ech,j2, since
the distance t

e
ch,j has been measured in a previous

round. Therefore the estimation of the error is no longer
correct, assuming coherence time has passed. The error
is Gaussian with zero mean, and therefore symmetrical
around 0. Therefore the error of a transmission is given
by the following:

E(|ei,j |) = E(|2ej,ch + ei,ch|) = (2�j,ch + �i,ch)

r
2

⇡

(21)

In contrast to this the CH is can update its time more
accurate (19):

E(|ei,ch|) = E(|ei,ch|) = �i,ch

r
2

⇡

(22)

From this we can conclude that the timing estimations
from node i to the CH is way more accurate than from
node i to any other node j in the cluster.

6 ALGORITHM TO DECENTRALIZED ASSIGN
CLUSTER HEADS
In this section we describe how to assign cluster heads
in a static network in a decentralized way. In practice
a lot of CH are already preassigned, as in the Network
is is known where data is aggregated and commands
are generated. However each node needs to be assigned
to a CH. The following algorithm automates this work
by ’promoting’ regular nodes to CH. We formulate the
algorithm to have the following goals: 1) The algorithm
ensures that two cluster heads are not next to each other,
in order to reduce the amount of shared nodes , and
2) Minimize the amount of Cluster heads needed, to
reduce interference of the clusters with respect to each
other. 3) The network itself is able to assign the first CH,
which can act as a starting point to the network. This is
done under the constraint, that the algorithm has to run
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Fig. 8. Flowchart to assign cluster heads in a decentralized way.

decentralized, with every node running the same simple
program.

Goal 3 is particularly useful in the case of an outage of
the last communication link. For example a house has its
own solar power generation, which needs a clock/phase
of the grid as input, but the communication/powerline
to the power grid breaks. Being able to start a new
network allows the PCO to start, giving the needed
clock input to the solar generation. The result is, that
an island is formed which is still able to function. Once
the line to the grid has been restored the PCO will
automatically realign with the power grid allowing the
solar generation to deliver power in phase to the grid.
(However a circuit breaker or a temporary turning off of

the solar generation is needed until PCO has converged.
Otherwise the power generation from the grid and the
solar generation from the previous island can be out of
phase.)

Our algorithm works as seen in Fig.8, which we now
describe: Initially a node scans its surrounding for exist-
ing PCO-traffic. If he can hear one or more clusterheads,
the node will join that network. In case the node can
hear some traffic but no cluster head, this means that
the node is at the border of the existing network and we
will need to assign another cluster head. To make sure
we assign the minimal amount of CH we apply a greedy
alorithm. Each node which is at the border to the existing
network broadcasts the number of nodes he as a new
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CH could cover. This message is forwarded by any node
not yet assigned to any CH. Then after all responses
arrived the node decides if he covers the most nodes.
If so he becomes a new CH and informs his neighbors
which will join his new cluster. If there are other nodes
with more neighbors covered they first do the previous
operation and the rest of the network waits and see if
their situation changes. However in the case of multiple
node having the same number of nodes to cover we have
to make sure only one of them will get CH at a time, in
order no to assign too many CH. Therefore the nodes
in question send each other a random number. Whoever
has the highest random number becomes a new CH.

If a node is This process gets repeated until all nodes
are covered, i.e. have a CH.

However there is the case that there is not yet an initial
network to join to. Therefore we need to give every node
the chance to be the initial point. This is done by giving
each node who cannot hear any network a small chance
to start the assignment process of a CH. This ensures
that we do not need to assign an initial CH to begin with
as the network will itself after a certain time. However
to waiting time N has to be chosen so large, that the
network has enough time to form before the next initial
point is set to give nodes connecting without this path
priority and also avoid unnecessary traffic.

With the threshold T we can experiment. One option
is to set it NoNeighbors

�1 to emphasize stating cluster
which have more nodes covered. If no other metric is
found we can set it to �1

7 EFFECT OF A NEW NODE JOINING THE NET-
WORK

Initially a node joining a network has only limited
information about the network. The node knows what
he received in this radio, which includes which and how
many CH are in range and an approximate usage in each
cluster. The node using this information in order to join
the network as follows:

When a new node is joining the network we have to
distinguish two cases, whether the new node is a shared
node or not. We will see in section 8 that it is beneficial
if all shared nodes are next to each other; And all non-
shared nodes are. In principle a CH assigns a discrete
part to the joining node, whereas the node itself choses
the continuous part at random.

When adding a non-shared node, this Node will send
a request to the CH, making sure the channel is not in
use when sending this request, via carrier sense collision
avoidance (CSCA). The CH receiving this request will
assign a free slot next to one of the existing local nodes,
which is done by transmitting the time the node needs
to wait until its own first firing.

When adding a shared node we have the issue that
there has to be a new slot at the same time in each cluster
the node is connected to. However quite often this will
not be the case, also because one goal of scheduling in

general is to use the available resources as good as we
can, which means there are little to no resources unused.
Therefore it becomes clear that the new shared node
can only confirm with one CH and has to ’brute force’
its way into other clusters. The algorithm we use is as
follows: The new node tries to guess which one of the
CH has the highest constraints, by observing the traffic
for one cycle. Then the node sends this CH a request to
join the network as a shared node, communicating which
other CH he can see. (Also using CSCA as above). The
CH will then assign a slot, if possible next to another
shared node with the same shared cluster(s). Otherwise
the CH assigns a slot between the shared and non shared
nodes. This ensures that existing shared nodes which
share the same other CH stay next to each other.

When adding a new CH the new Ch announces this
to the network. This makes nodes in range connect to
the new CH either as local node or as a shared node.
However when a adding a CH, previously non-shared
nodes can become shared with the new CH. Therefore
all the nodes converting from a non-shared to a shared
node will restart their scheduling, requesting a new spot
from the existing CH to ensure that they, as shared node
are next to the other shared nodes.

8 PROOF OF CONVERGENCE OF PFS
In this part we explore the behavior of the CODTM. For
simplicity of the convergence analysis we analyze the
model in equation 4 and 6. A proof of convergence of
the COTDM for Proportional Fair Scheduling is given in
[?] for a single cluster. We define �u(t) = �

s
u(t)� �

e
u(t)

(mod 1) and ⇥u(t) = �

e
u(t)��

s
u�1(t) (mod 1). Therefore

we can describe the complete system with the following
vector of size 2N :

�(t) = [⇥1(t),�1(t),⇥2(t), ....,�n�1(t),⇥n(t),�n(t)]

the proof in [?] show that for an all to all connected
network there exist a unique fixed point where the
system can converge to which is:

�

⇤
=

�

D

(�, D1, �, D2, ..., �,Dn)

T

where D =

Pn
u=1 Du and � =

D

D + n�

.

In this paper we want to extend this to a multicluster
scenario, and we want to show what happens if a node
can hear multiple cluster heads. An example topology
with two clusters is shown in fig. 9 below:

We can represent the two different clusters with two
different system vectors, with two shared variables that
are referred to the shared node that we can consider,
without loss of generality, the last node of both the
clusters, respectively the n-th one and the l-th node
where N and L are the cardinality of the two clusters:

�N (t) = [⇥1(t),�1(t),⇥2(t), ....,�n�1(t),⇥n(t),�n(t)]

�L(t) = [⇥1(t),�1(t),⇥2(t), ....,�l�1(t),⇥l(t),�l(t)]
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Fig. 9. Network topology with two clusters, each with a
Cluster Head CH and Non-Shared Nodes N and Shared
node among different clusters S

The shared nodes can hear all the nodes in the two
clusters. However as seen in they will update only with
the closest neighbors from any of the two clusters as seen
in fig. 3.3.

In the following we will show that having any con-
figuration of nodes will each lead to a unique fix point
under certain conditions.

8.1 One shared Node, updating with one cluster

Assume that for now we only have one shared node.
We need to recall the definition of the system matrix M
describing one whole round of updates:

M =

NY

u=1

Mu

where MN
u represents the matrix for the update of node

u in the cluster N. Which has the following form for all
nodes updating with that cluster:

Mu =

0

@
I(2u�2) 0(2u�2)⇥(2N�2u+2)

03⇥(2u�2) Uu 03⇥(2N�2u�1)

0(2N�2u�1)⇥(2u+1) I(2N�2u�1)

1

A

where

Uu =

0

BBBBBBB@

1� ↵

Du + �

Du + 2�

↵

�

Du + 2�

↵

�

Du + 2�

↵

Du

Du + 2�

1� ↵

2�

Du + 2�

↵

Du

Du + 2�

↵

�

Du + 2�

↵

�

Du + 2�

1� ↵

Du + �

Du + 2�

1

CCCCCCCA

The cluster the shared node updates with, we assume
as the one with cardinality N, will have the same matrix
M described in [?], and hence the same dynamic. Let’s
show now what happens to the node not updating the
shared node, say the cluster with cardinality L. Noteing
the shared node as the l-th node in Cluster L, the matrix
ML

l will be the identity matrix and so the matrix of the
cluster is: ML

=

QL�1
u=1 Mu · I.

ML
=

0

BBBBB@

ML
(2N�1)⇥(2N�1)

0

0

...
0

0 0 · · · 0 1

1

CCCCCA

We can further see that each ML
u is a left stochastic

matrix and so is the product ML. We note that if we
take the submatrix of dimension 2L�1 from the top left
of ML, this will also be left stochastic matrix cause we
just removed a 0 value from each column. Furthermore
the submatrix is primitive cause it contains all positive
elements

We can then apply the Perron-Frobenius Theorem to
the submatrix, which ensures that the sub matrix has
exacly one eigenvalue equal to 1 and 2L � 2 eigenval-
ues inside the unit circle. Considering the submatrix of
dimension 2L � 1 we are in the same situation of the
proof in [?] and we can say that the fixed point of the
(2L-1)-subsystem is represented by:

�

⇤
2L�1 =

�

D

(�, D1, �, D2, ..., �,Dl�1, �)
T

If we look back at the complete matrix M

L, we that the
last row adds an eigenvalue 1. Therefore the eigenvalue
of one has multiplicity equal to 2 and we can find the
two eigenvetors associated:

�

⇤
1 =

�

l�1

D

l�1
(�, D1, �, D2, . . . , �,Dl�1, �, 0)

T

�

⇤
2 = (0, 0, 0, 0, . . . , 0, 0, 0, 1)

T

with D

l�1
=

Pl�1
u=1 Du and �

l�1
=

D

l�1

D

l�1
+ l�

.

The possibility to have this linear combination allows
the shared node to reach the convergence of the cluster
that make it update, without losing his slot in the other
cluster. In fact, the cluster that make it update is a
complete system with a unique fixed point and so

lim

t!1
�m(t) =

�

m

D

m
Dm

with D

m
=

Pm
u=1 Du and �

m
=

D

m

D

m
+ m�

.

We define:
w

l�1
=

�

l�1

D

l�1
and w

m
=

�

m

D

m

then the vector

�

⇤
L =((1� w

m
Dm)w

l�1
�, (1� w

m
Dm)w

l�1
D1, ...

..., (1� w

m
Dm)w

l�1
�, w

m
Dm)

T

represents a fixed point for the system L cause we can
see that:

• ||�⇤L||1 = 1

• �

⇤
L = (1� w

m
Dm)�

⇤
1 + (w

m
Dm)�

⇤
2
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where �

⇤
1 and �

⇤
2 are the two eigenvectors defining the

subspace of fixed points of system L. We can see that
the proportional fair scheduling is conserved between
the non-shared nodes in the cluster L but we lose the
proportionality between the node m and the others,
cause the slot assigned to the node m is decided by the
cluster M and hence is based upon the percentual weigth
of its demand among the cluster M that can be different
from the one in the cluster L. We now have to compare
the two idle slots before the node in the two system
(�M , �L) and verify the node makes the update with the
closest previous:

�M = w

m
�

�L = (1� w

m
Dm)w

l�1
�

Now, with simple calculations we can obtain:

�M S �L , D

l�1
+ l� S D

m �Dm + m�

, D

L�1
+ (l � 1)� S D

m�1
+ (m� 1)�

and see that if a cluster has a lower overall demand
excluding the share node, the other cluster will have a
smaller idle slot and make the shared node to update
with it. So, even if we consider an initial random
distribution of nodes around the clock in the two
cluster, at the steady-state the shared node always
update with the most demanding cluster, and this is
good for us considering the previously described partial
loss of fairness in this scenario. If the node made the
update with the lower demanding cluster, it would take
a big portion of the bandwidth dedicated to the bigger
cluster and inhibite all the other nodes to reach their
fair portion: it’s definitely better to respect fairness in
the higher-demand context.

8.2 Two or more shared nodes, updating with one
cluster
If we have more than one nodes shared among two
clusters, we can extend our analysis and highlight that,
if we have two nodes (m,l) updating with the same clus-
ter, the ”incomplete” system has now four eigenvectors
associated to the eigenvalue 1:

�

⇤
L1

= w

m�1
(�, D1, �, D2, ..., �,Dm�1, �, 0, 0, ..., 0)

T

�

⇤
L2

= (0, 0, ..., 0, 0, 1, 0, 0, ..., 0, 0)

T

�

⇤
L3

= w

l�1
m+1(0, 0, 0, ..., 0, �, Dm+1, �, Dm+2, ..., �,Dl�1, �, 0)

T

�

⇤
L4

= (0, 0, 0, ..., 0, 1)

T

with w

l�1
m+1 =

�

l�1
m+1

D

l�1
m+1

, D

l�1
m+1 =

Pl�1
u=m+1 Du,

�

l�1
m+1 =

D

l�1
m+1

D

l�1
m+1 + (l �m)�

.

The situation of having several shared node not next
to each other is not desirable because we can not have a
rigid constraint on the coefficient of �

⇤
L1

and �

⇤
L3

, having

infinite fixed points and losing the fairness between these
two subgroups.
Therefore this topology our cluster heads have to ensure
that these shared nodes are consecutive to obtain these
four different eigenvectors:

�

⇤
L1

= w

l�2
(�, D1, �, D2, ..., �,Dl�2, �, 0, 0, 0)

T

�

⇤
L2

= (0, 0, ..., 0, 1, 0, 0)

T

�

⇤
L3

= (0, 0, 0, ..., 0, 1, 0)

T

�

⇤
L4

= (0, 0, 0, ..., 0, 0, 1)

T

In this situation, there is no significant difference be-
tween the previous described case. The complete cluster
gives an initial constraint on the value of the three
last variables of the system L, and so we can find the
coefficients �2,�3,�4 for �

⇤
L2

,�⇤L3
,�⇤L4

and then multiply
�

⇤
L1

with (1 � �2 � �3 � �4). Then we have to verify
the idle slots to find the final solution; since the last
three variables are equal in both systems we can assume
that if the first of them update with a cluster, the second
updates with the same. If the cluster L is the incomplete
one we can calculate:

�L = [1� w

m
(Dm�1 + � + Dm)]w

l�2
�

�M = w

m
�

and then:

�M S �L , D

l�2
+ (l � 1)� S D

m
+ m� �Dm�1 � � �Dm

, D

l�2
+ (l � 2)� S D

m�2
+ (m� 2)�

and find the same relation that we found for the previous
case.

8.3 One Node synchronizing with two clusters
There the case when a node is not fully synchronizing
with one cluster. This can happen if the cluster has
multiple shared nodes but also when the cluster only
has one shared node which in another cluster is next to
a non-updating node, as seen in fig.10 .

For this section we have two separate cases we have
to describe: In one cluster there are all nodes fully
synchronizing with that cluster exempt one node who is
synchronizing one of his beacons with another cluster. If
we look at this example closer we notice that this means
that one of the points in the system is fixed but all others
remain flexible. Therefore the non shared nodes cluster
will converge just as a cluster will all node synchronizing
with that cluster, except that the cluster has one fixed
node and therefore has to rotate (need to find better
wording). However the shared node is now updating
with two different clusters. Therefore he has its own
update Mu, described as follows.

�

⇤
1 =

�

l

D

l
(�, D1, �, D2, . . . , �,DL�1, �, D

L
S )

T

�

⇤
2 =

�

n

D

n
(�, D1, �, D2, . . . , �,DN�1, �, D

N
S )

T
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Fig. 10. Synchronizing of a shared nodes start and end
beacon in different clusters. We see a fixed node f, in red,
from another cluster which will not move, hence is fixed.
All other nodes are non-shared nodes. We can see the
Space available for the shared node as the black line,
which can be in multiple clusters.

Where D

L
S and D

N
S is determined as follows:

D

L
S =

D

L

�

L
⇤ �

S

D

SC
⇤DS ⇤ Spaceavail

D

N
S =

D

N

�

N
⇤ �

S

D

SC
⇤DS ⇤ Spaceavail.

With S

SC
=

P
DL +

P
DN �DS and

�

S
=

D

SC

D

SC
+ (m + l � 1)�

and

Spaceavail the available space in the clusters which are
updating with them, normalized to one per cluster. An
example can be seen as the black line in fig.10.

9 SIMULATION RESULTS
We simulated our approach in Matlab for one multiple
clusters.

For the simulation of one cluster we simulated 5
Nodes over 100 iterations with a coupling factor ↵ = 0.2.
We can see in fig.13 that the system is synchronizing
itself and the error after 5 iterations with respect to
node1 as a reference is 1e-10. We can further see in fig.11
that the system is organizing itself without overlapping,
meaning that there will be no collisions. However after
a miss detection of the green node in fig.11 the node
was told by the CH to back of as he would otherwise
interfere. But as we can see this is not a problem for the
system as it is self healing. We can see that 30 iterations
later the system has normalized and is dividing the
available transmission time according to the demand
which we can see in fig.12.

With multiple cluster this algorithm is working as
well. We distributed node randomly (fig.14) in a plane
giving each node a maximum communication distance.
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Fireing−Rounds

S
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t

Fig. 11. Convergence of the scheduling algorithm with 5
nodes each different demand. Noise and random events
can be seen, as the green Node had to back off, after
a miss detection. However this is just temporary as the
network is self-healing.

Node 1, D:10.4% R:9.17%

Node 2, D:10.4% R:10.8%

Node 3, D:10.4% R:10.8%

Node 4, D:10.4% R:13.3%

Node 5, D:41.7% R:40.8%

Guardspace 15%

Fig. 12. Scheduling result of nodes with different demand
after 100 firing rounds. Each node is demanding D%
and actually receiving R%. The guardspace are free slots
serving as an entry point for new nodes, and as a guard
intervall between each node.

Therefore the nodes first assigned themselves the mini-
mum number of CH and then started the scheduling and
synchronization algorithm. We can see that the algorithm
schedules very well limiting each node by the denser
cluster (fig.15, fig.16). For the synchronization we can
see that it is a lot slower that for the one cluster case
presented above and also less accurate. This is because
the time information needs to hop over several nodes
each time addend an additional error. The hoping of the
information also explains why the algorithm is slower
as one cluster first has to organize himself and then
slowly has to ’convince’ the other cluster of the ’right’
time (fig.17).

We can see that the algorithm also converges for 2
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Fig. 13. Convergence of the syntonization algorithm. With
respect to an arbitrary node chosen as reference.We can
see that after 30 iterations the algorithm converges and
we get an error of 1e-10s determined by the SNR of the
transmissions

−60 −40 −20 0 20 40 60 80 100
−80

−60

−40

−20

0

20

40

60

80

100

120
Position of the Nodes

Fig. 14. Positions on the nodes randomly distributed. The
circled nodes represent a cluster head.
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Fig. 15. Convergence of the scheduling algorithm of
cluster one containing 6 out of the 12 nodes.
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Fig. 16. Convergence of the scheduling algorithm of
cluster one containing 8 out of the 12 nodes. Note that
one node can be in more than one cluster.
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Fig. 17. Convergence of the syntonization algorithm. With
respect to an arbitrary node chosen as reference.We can
see that after 70 iterations the algorithm converges and
we get an error of 1e-8s determined by the SNR of the
transmissions

clusters and we will show in a future paper that this is
also true for an arbitrary number of clusters.
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