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ABSTRACT 
The uncertainty estimation in groundwater flow models plays an important role for the 
planning of infrastructure projects. The uncertainty caused by geologic heterogeneity 
can be modeled using Monte Carlo simulations, which require multiple realizations of the 
geologic field. In this study a information theoretic approach is followed to model 
geologic regions as random fields. A Python code was written to determine the 
occurrence probabilities of the structures and to calculate the Entropy in the dataset. The 
analysis was conducted for a manually created dataset. It was found that within 16 
symbols determined in the dataset, 2 symbols cover almost 87% of the occurences and 
8 symbols cover almost 99%. 
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INTRODUCTION 
Groundwater modeling tools are used in many private, state and federal studies to help 
decision makers. Those studies mainly include planning and forecasting, historical 
reconstruction and contaminant transport problems. 

Although these tools provide great guidance, we should keep in mind that they are just 
approximations to the complex natural systems. They hold many assumptions and 
simplifications that are based on engineering judgment. 

Due to the assumptions and simplifications mentioned above, all models carry a certain 
degree of uncertainty with them. In groundwater models two major sources of 
uncertainty are the geological heterogeneity and the uncertainty in recharge conditions. 
In the latter, climate change and anthropogenic impacts play very important roles and it 
is widely studied by scientists in our decade. The first one on the other hand, is often 
overlooked as it becomes obvious in much larger scales.  

The uncertainty originating from the geological heterogeneity can be modeled by using 
Monte Carlo simulations. In order to run the Monte Carlo simulations one needs many 
realizations of the uncertainty causing parameters. 

In this study, we aim to develop methods to identify and model the geological 
heterogeneity by considering it as a spatial system and using information processing and 
stochastic modeling tools. 

This work was conducted to find answers for two questions:  

• How random is the spatial system? 
• How can we generate other possible realizations of the spatial system? 

This report is organized in six sections. It starts with Introduction, which is followed by 
the Background. In the Background section, it was aimed to provide brief information on 
groundwater systems. The third section is Dynamical System, which gives further 
information about the spatial systems and how we considered geology as a dynamical 
system. Fourth section, Methods, presents the methods and tools used in this study. The 
results are given in the fifth section and the report is concluded in the sixth section. 

BACKGROUND 
GROUNDWATER FLOW 
Groundwater is the major source for clean, safe and reliable water supply. 30 to 46% of 
California’s water is supplied from groundwater while there are some communities that 
are 100% groundwater dependent for agricultural and urban use. 

Often mistaken with the soil water, groundwater is actually the water below the soil layer. 
The distance from surface to the groundwater surface can change between a couple 
meters to kilometers. 

The groundwater moves slowly within the pores and fractures of the geological 
formations. The slow flowing groundwater lets us to make many valid assumptions 



 2 

otherwise not possible. This simplifies the mathematical and physical equations used to 
solve the groundwater flow. 

The groundwater flow equation is a form of diffusion equation, which is derived from a 
mass balance for a small REV (Representative Elementary Volume) in which the 
properties were assumed to be effectively constant which is an acceptable assumption 
in the lab-scale. Darcy’s Law is used to describe the fluxes to and from the REV. 

The governing equations for confined and unconfined groundwater flow is as follows: 

Confined:  𝑆 !!
!"
= ∇ 𝐾  𝐻  ∇ℎ + 𝑅 

Unconfined:   𝑆!
!!
!"
= ∇ 𝐾  ℎ  ∇ℎ + 𝑅 

where, 

h: hydraulic head [L] 

K: hydraulic conductivity [L/T] 

S: specific storage [-] 

Sy: specific yield [-] 

H: depth of the confined zone [L] 

R: sink/source term such as recharge or pumping per unit area [L/T] 

The storage coefficients (S and Sy) and the hydraulic conductivity (K) are aquifer 
parameters and they are related to the geologic formation in which groundwater flows. In 
reality, factors other than the geology may exist that affect the aquifer parameters. 
However, for the sake of simplicity in this study we assume that the geologic formations 
control the aquifer parameters. 

In regional studies groundwater masses cover much larger areas. The hydrogeologic 
information on the regional scale is often interpreted from the point data using geological 
methods. Because of the size of the scale, the heterogeneity affecting the groundwater 
flow cannot be represented. 

DYNAMICAL SYSTEM 
The information theory and stochastic modeling tools are generally developed and used 
for the analysis and modeling of time series. 1-D spatial systems can also be treated the 
same way by using the same tools. 

The geological formations were formed in multiple dimensions very slowly over a very 
long period of time. The rate of the process is very small so that we can say that there is 
no time dependency. However, formations are created next to each other, which makes 
them space dependent. There are transitions between formations, and similar formations 
often follow certain others as they were formed. 
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When we talk about the geology, or other spatial 2-D systems in general, things get 
more complicated. To begin with, as mentioned there is no time dimension in the 
systems we study. A good starting point is to think the system as two independent 1-D 
systems. However, with this assumption we lose very important information that the 
system harbors between the dimensions. 

For this very specific reason, we have to keep the structural information between spatial 
dimensions together in a symbol while conducting our analysis. In this study, to detect 
the symbols in a dataset we chose the “Z” shaped template presented in (Feldman & 
Crutchfield, 2002). The “Z” shape accommodates left and right information in adjacent 
upper and lower rows altogether (Figure 1 - top). The set of all symbols forms our 
alphabet (Figure 1 - bottom). 

 

 

FIGURE 1. THE "Z" SHAPED TEMPLATE (TOP) AND THE ALPHABET FOR A WORD LENGTH 
(M) OF FOUR (BOTTOM) 

Since we stored the multiple dimensional information in the symbols, we can now 
consider our model as a 1-D system. 
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METHODS 
PROBABILITIES 
Occurrence probability of each symbol is determined by ratio of the number of times 
each symbol was observed (𝑁!) and the total number of occurrences in the spatial 
dataset (𝑁). The occurrence probability of symbol 𝑖, 𝑝!, is calculated as: 

𝑝! =
𝑁!
𝑁

 

ENTROPY 
Used in information theory, entropy is the number of yes/no questions we need to ask to 
determine which symbol was observed (Jvstone, 2014) (Crutchfield, 2014). It is 
calculated as: 

𝐻 = − 𝑝! log! 𝑝!
!

 

In a case with 2 classes, since a yes/no question will give us the value of a node, we can 
also think entropy as the number of the nodes that we need to know within the symbol to 
determine the rest of the symbol. 

TEST RUNS 
A Python code is written to visualize and infer the dataset and to calculate entropies. 
Some functions are used from the package Numpy. The program code is included at the 
end of this report. 

For test runs during the development of the code, following patterns are used as inputs. 
The number of classes is limited to 2 for computational ease. 

• 1x1 Checkerboard pattern, 
• Vertical Lines with width of 1, 
• Diagonal pattern with 1x1 and 2x2 squares, 
• Uniform random distribution. 

 

 

The template sizes are varied between M=2 and M=16 and the entropy is recorded. For 
M=2 case there are 2! = 4 unique possible symbols. For M=16 this number increases to 
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2!" = 65,536. 

Once the code is complete and running, it was tried on a 100x100 dataset created 
manually. This dataset is presented below in Figure 2 and will be called as 256B dataset 
in the rest of the report. As you can see from the image, the dataset neither have any 
repeating pattern in it like the previous cases nor it is completely random. It has some 
structure inside it and therefore harbors information to be discovered. 

 

 

FIGURE 2. 256B DATASET 

 
RESULTS 
TEST RUNS 

OCCURRENCES & PROBABILITIES 
The number of unique symbols determined in each pattern in the test runs is presented 
in Table 1.  In the first three, depending on the pattern, we see that the number of unique 
symbols reach to a limit.  

On the other hand, the random case never reaches to a limit as we expected. With an 
adequate sample size, we should see all possible symbols as unique symbols. In our 
computation this is what happens until M=12. After this word length our sample size 
becomes inadequate for the analysis.  
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TABLE 1. NUMBER OF UNIQUE SYMBOLS OBSERVED IN TEST RUNS FOR CHANGING 
WORD LENGTHS 

# OF UNIQUE 
SYMBOLS 

Word Length 

2 4 6 8 10 12 14 16 

Checkerboard 2 2 2 2 2 2 2 2 

Vertical Lines 4 8 8 8 8 8 8 8 

Diagonal 4 14 22 28 28 28 28 28 

Random 4 16 64 256 1024 4041 10650 14894 
# of POSSIBLE 
SYMBOLS 4 16 64 256 1024 4096 16384 65536 
TOTAL # of 
OBSERVATIONS 19600 19208 18816 18424 18032 17640 17248 16856 

 

 

When we looked to the probabilities, the checkerboard, vertical lines and random cases 
output equal probabilities for each unique symbol. The diagonal pattern output different 
probabilities because of its different symmetry. For M=8 case, its probabilities are 
changing between 1/16 and 1/32. 

 

ENTROPY  
Table 2 and Figure 3 presents the entropies calculated for each pattern and word length. 
For the checkerboard pattern it is enough for us to know only the value in one node to fill 
the rest. On the other hand, in the random case there is no way for us to determine the 
symbol if we don’t know the value of every node. Once again, because of the inadequate 
sample size, the values diverge after M=12 for the random case. 

 

 

TABLE 2. ENTROPY CALCULATED FOR TEST RUNS FOR CHANGING WORD LENGTHS 

ENTROPY Word Length 

2 4 6 8 10 12 14 16 

Checkerboard 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Vertical Lines 1.811 3.000 3.000 3.000 3.000 3.000 3.000 3.000 

Diagonal 1.906 3.639 4.375 4.750 4.750 4.750 4.750 4.750 

Random 2.000 4.000 6.000 8.000 10.000 11.800 13.209 13.800 
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FIGURE 3. ENTROPY IN EACH PATTERN FOR CHANGING WORD LENGTHS 

 

256B DATASET 
The algorithm was run for 256B dataset with wordlengths between M=2 to M=10. The 
numbers of observed unique symbols are presented in Table 3, and the entropies are 
presented in Table 4 and Figure 4. 

 

TABLE 3. NUMBER OF UNIQUE SYMBOLS OBSERVED IN TEST RUNS FOR CHANGING 
WORD LENGTHS 

# OF UNIQUE 
SYMBOLS 

Word Length 

2 4 6 8 10 

256B 4 16 56 125 228 
# of POSSIBLE 
SYMBOLS 4 16 64 256 1024 

 

TABLE 4. ENTROPY CALCULATED FOR TEST RUNS FOR CHANGING WORD LENGTHS 

ENTROPY Word Length 

2 4 6 8 10 

256B 1.012 1.565 2.114 2.635 3.151 
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FIGURE 4. ENTROPY IN EACH PATTERN FOR CHANGING WORD LENGTHS 
 

From above results we cannot determine a certain word length that keeps the entropy 
constant and it continuously increases such as the random case in the test runs. 
However, there is important information hidden in the occurrence probabilities of the 
symbols. 16 symbols determined for M=4 are given below with their occurrence 
probabilities (Figure 5). 2 symbols cover almost 87% of the occurrences and 8 symbols 
cover almost 99%. This situation significantly reduces the entropy of the system 
compared to the random one. 

 

 

FIGURE 5. UNIQUE SYMBOLS OBSERVED IN 256B DATASET AND THEIR PROBABILITIES 
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CONCLUSION 
Most stochastic groundwater studies take the aquifer parameters as random constants. 
Considering the formation of the geologic structures, aquifer parameters should be 
considered as random fields rather than random constants. 

In this study, an information theoretic approach is followed to model aquifer parameters 
as random fields. The symbols used in 1-D are redefined for 2-D structures and entropy 
is calculated for different datasets. In this way, the uncertainty or randomness of the data 
is quantified. 

For the natural datasets, no word length was found after which the entropy becomes 
constant. 

Also this method and code can be used with datasets that have more than 2 classes 
although the computational time will take significantly longer with longer word lengths. 

The occurrence probabilities of symbols are determined during entropy calculation. They 
can be used for generating similar random fields to be used in Monte Carlo simulations 
for uncertainty estimation. The generation algorithm should be created considering the 
dataset. 
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