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Abstract:

  This project concerns the application of clustering to fMRI time-series
data. By clustering voxels, the noise in the data can be mitigated, as
averaging over multiple correlated voxels will increase the signal to noise
ratio significantly over examining individual voxels. Here a clustering
algorithm using dendrogram clustering is proposed, as this method optimally
combines similar voxels in a stepwise fashion. To account for localization
of function in the brain, only the 6 voxels directly surrounding a given
one are considered for clustering. To assess the information loss at each
step, the Entropy of the system is calculated  after every iteration. Two
different clustering parameters are here considered, one being correlation
coefficient, the other being mutual information. The results here point to
correlation coefficient as a superior method for conserving system entropy.

Introduction:

  Current  fMRI  data  analysis  is  typically  performed  using  one  of  two
methods;  Either  voxels  are  correlated  with  time  based  events  on  an
individual level, and the researcher looks for clusters of voxels that all
correlate with the experiment, or specific regions of interest (ROIs) are
defined a-priori, and only these voxels are assessed. In the first case,
clusters are formed based on how well voxels correlate with the experiment
and and  just  the  experiment,  without  first assessing structural
significance. 
  ROI  selection  takes the  opposite  approach,  the  specification  of  a
specific region before seeing results forces analysis to only take place in
specific areas and prevents simply fishing for correlations, however this
method has a hard time taking the individual data into account. Since all
brains are different, and regions of interest can vary significantly in
size and location, it can be difficult even with alignment to a template
space to choose a voxel region that works for all subjects.
  Clustering the brain into discrete regions before taking the data into
account takes the intermediate path between these two methods. On the one
hand, after clusters are formed, the researcher can still fish them for
correlations with experiment events, however the "pool" to fish from is
significantly smaller. More importantly, these clusters were created by
clustering similar voxels, and is based purely on correlations within the
brain data, and not in a manner specific to the experiment events. In this
way  it  is  similar  to  the  ROI  selection  a  priori,  where  regions  are
specified before looking specifically at experiment correlations, but as an
added bonus these regions are guaranteed to be aligned with the data. While
it  is  not  immediately  apparent  what  clusters  correspond  to  what  brain
regions, as with the a priori ROI selection, it is hoped that by clustering
in a manner that conserves as much information as possible, that regions
that behave contiguously will naturally emerge out of the data and be
recognizable in terms of location and function. This is the motivation for



this project.
  The clustering algorithm here proposed uses dendrogram clustering, which
starts with the brain separated into individual voxels, and then clusters
the  two  most  correlated,  spatially  proximate  voxels.  this  process  is
repeated, and can be iterated until the entire brain is one big cluster.
Using this method, there are many important questions to consider. This
project addresses three of these questions specifically: First, what is a
good time to stop clustering  so that the clusters will be as large as
possible  without  losing  too  much  information? Second,  what  is  a  good
measure  for  similarity  between  voxels  to  promote  the  generation  of
meaningful  clusters?  Third,  should  the  newly  computed  average  cluster
values be used for subsequent steps in clustering or should the original
data values be used?

Background:

  Functional Magnetic Resonance Imaging (fMRI) is a very promising method
for gathering data on the entire brain volume during an experiment. fMRI
involves iteratively scanning the brain with a strong electromagnet and
detecting the magnetic response to perturbation, yielding a time-series of
values. When nerve cells fire and exhaust resources, oxygenated blood is
pumped to those cells to replenish them. fMRI works by detecting this
hemodynamic  response,  and measuring  changes  in  blood  flow  over  an
approximately 6 second period directly following activation.
  fMRI scans the brain in slices, and usually for analysis purposes these
slices are interpolated together into single time slices.Complete scans are
taken approximately every two seconds. to standardize the positions of the
voxels, scans are also typically aligned to correct for motion, as well as
warped  to  a  standard  space  to  help  account  for  differences  across
individuals. 
  As can be seen based on these standard preprocessing steps, as well as
the indirect nature of the hemodynamic response, fMRI study is far from an
exact  science.  individual  voxels  are  usually  quite  noisy  as  well.  the
typical method for dealing with this low signal to noise ratio is blurring
the data via a Gaussian function, which can essentially average out noise,
but at the cost of signal definition.
  The current approach follows these preprocessing steps before the data is
clustered,  with  the  exception  of  blurring,  as  the  averaging  of  values
within clusters should serve a similar function.

Methods:

The methods used to analyze the system can be classified into three types.
The  first  set  of  methods  involve  the  preprocessing  of  the  fMRI  data,
described  in  the  background.  The  second  set  of  methods  involve  the
clustering algorithm itself, these are the dendrogram clustering algorithm
and the similarity metric used to generate clusters. The third set of
methods  involve  analysis  of  how  the  system  changes  with  more  cluster
formation, the metrics used here are the entropy of the system as well as
the size of the largest cluster.
  The data preprocessing for this project was done using the fMRI analysis
software AFNI. A single subject resting state brain scan taken over around
440 seconds (a total of 220 volume samples) was used as the data source for



this  project  after  assessing  the  data  to  ensure  that  there  was  not
excessive motion or other data corrupting factors. The brain size was also
scaled down by a factor of 2 (by averaging voxel values in 2x2x2 squares)
to increase the speed of computation.  This lowered the total number of
voxels per time sample down from 44471 to 5263.
  The clustering algorithm was written in c, interfaced with a framework
for viewing and preparing the data written in python. First the similarity
measures between all touching voxels were calculated and put into a list.
the voxel pair with the highest similarity rating is chosen from this list,
and the two voxels that share this similarity were grouped together into a
new cluster. Any voxels that were already part of a cluster with either of
these two voxels are also merged with the new cluster. The algorithm starts
with all voxels as separate clusters, and ends with the entire brain merged
into one cluster. Only choosing the nearest neighbor was made a constraint
to  force  contiguous  group  formation  as  well  as  because  it  made  the
clustering algorithm run faster as fewer similarity measures needed to be
calculated.
  Two similarity measures were compared in this project. One of these was
the mutual correlation coefficient between voxels, the second was their
mutual information. the number of bins used to calculate mutual information
was also varied, looking at 2, 10, and 100 bins, bound evenly between the
minimum and maximum value over the volume.
  To measure the information loss occurring with each step, the entropy of
the  system  was  measured  with  each  new  iteration  of  the  clustering
algorithm.  To calculate the entropy over the entire  experiment, entropy
values were calculated across all voxels in the brain volume at a given
time point, then these entropies for all times were averaged. Similarly to
the mutual information clustering algorithm, the number of bins used to
calculate the entropy was also varied between 2, 10, 100, and 1000 bins.

Results:

  There are several interesting findings from this data analysis. The first
question is whether to update values for voxels within a cluster when it is
formed, or to let voxels keep their original values. This impacts further
cluster formation. The argument for updating is that clusters formed by
recomputing  the  averaged  correlation  with  every  merge  should  have  an
overall higher correlation amongst their voxels. The argument against this
is that not tampering with the original correlations may result in clusters
that correspond more closely to the original data.
  As  can  be  seen  in  Figure  1,  the  entropy  of  the  system  declines
significantly slower with updating of similarity measures than without.
Also, as can be seen in Figure 2, the maximal cluster size stays smaller
for a far longer duration when clusters are being updated than when they
are not. In fact, when clusters are formed without averaging, it appears as
though a single contiguous region will quickly result rather than many
small individual clusters, as can be seen by comparing Figures 3 and 5.
  Interestingly,  voxels towards the middle of the brain  where the white
matter is located, are the last regions to form clusters, as is evidenced
by Figure 4. This is the same setup as Figure 3, the only difference being
that all clusters of size 5 or smaller have been removed. It is expected
that clusters would not form there, as fMRI is believed to only be able to
detect activation in the gray matter, meaning the white matter regions are



governed by noise.
  We next look at the comparison between using correlation coefficient vs
mutual information as the measures of similarity. mutual information was
computed using 3 different numbers of bins, 2, 10, and 100. the number of
bins  that  the  data  was  separated  into  largely  affected  the  mutual
information  values  computed  for  all  voxels.  This  can  be  visualized  by
looking at the changes in entropy and largest cluster size as the number of
bins are altered. These data are presented in Figures 6 and 7. in all
cases, it is clear that mutual information with only 2 bins, or a binary
sorting of values being above or below, does a comparatively poor job of
forming useful clusters. 10 and 100 bins do a better job, but Correlation
Coefficient is clearly the best at both conserving mutual information and
keeping  the  maximum  cluster  size  low.  For  this  reason,  the  use  of
Correlation Coefficient as the similarity metric is recommended.
  Finally, using the preferred settings determined via the previous several
tests,  the sufficient number of bins needed to test the entropy of the
system is assessed.  Entropy graphs before this point have been computed
using  100  bins. 2,  10,  100,  and  1000  bins  for  computing  entropy  are
compared. Figure 8 shows the results of graphing the entropy change with
these numbers of bins. There are several noticeable differences in how the
Entropies change over time for the different systems. in the case of small
numbers of bins, the entropy is unstable, fluctuating depending on how the
values in the system are changed. For larger numbers of bins, however,
there is consistent information loss with each step. The reason for this is
that Entropies taken with fewer bins are already losing significant amounts
of information simply by  coarse graining the resolution of the system.
Therefore, simply by chance, the system may attain a state that seems more
entropic by changing its value distribution. even if these values are in
fact more similar.

Conclusions: 
  There are several clear results that this work reveals. The first of
these  is  that  Mutual  Information  does  not  seem  as  good  a  metric  for
conserving Entropy in the system as correlation coefficient, no matter the
number of bins. The second is that averaging cluster values at each step
seems to produce better results than not doing so. Finally, a comparatively
large number of bins, in the 100s, seems a better measure of the amount of
information lost than a lower number, as greater numbers tend to show
consistent loss rather than sporadic information gain.

Dynamical System/Future Work:

  The brain is a complex nonlinear system that may initially seem difficult
to  apply  information  theory  concepts  to.  The  amount  of  data  gathered
through fMRI scans is paltry in comparison to the amount of activity that
is occurring.
  Because observation of the system is so difficult and abstracted, and
still so little is known about the brain's function on a larger level, it
is  difficult to  treat  the  brain  as  a  Dynamical  System  with  defined
equations of motion. However, a potential future direction to take this
work could be attempting to form Markov models  from the cluster data.
clusters are a nice target for Markov modeling because the signal to noise
ratio for clusters is low, and the clusters form over regions of similar



behavior, meaning that a model of their aggregate data would do a good job
describing their constituent voxels. these methods could be used to find
pairs  or  groups  of  clusters  that  would  not  be  found  simply  through
correlation, but are nonetheless related structural-temporally.
Figures

Figure 1: Updating cluster values vs not doing so



Figure 2: largest cluster size with updates vs without

Figure  3:  sample  brain  slices  after  3800  iterations,  using  clustering
coefficient metric



Figure  4:  sample  brain  slices  after  3800  iterations,  using  clustering
coefficient metric, but with clusters of size 5 or less removed. 

Figure  5:  sample  brain  slices  after  3800  iterations,  without  updating
cluster values.



Figure 6: comparing entropy change with different metrics



Figure 7: comparing change in largest cluster size using different metrics



Figure 8:  comparing entropy decline using different numbers of bins to
measure entropy
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