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Abstract

Objects and systems at all scales operate by a mix of internal impulsion and external
influence. This phenomenon, ubiquitous and accurately modeled by simple systems
of coupled oscillators, are observed in systems of elementary subatomic particle,
biological populational dynamics and interactions of heavenly bodies on an astro-
nomical scale. Despite the simplicity of coupled oscillator models like Kuramoto’s
and the Dripping Handrail, they contain rich behavior such as phase transitions
and harbor computational capabilities. The combination of simplicity, leading to
mathematical tractability, and rich behavior is why coupled oscillator systems are
so heavily studied. We study the dynamics and information storage capacity of
a small, simple system of coupled oscillators - with ultimate goals of elucidating
neural oscillatory behavior and investigating the computational benefits that such
oscillatory behavior might engender. We map out the phase space and dynamics of
a single discrete-time, discrete space Dripping Handrail (DH) oscillator system and
examine what additional complexities arise when two DH oscillators are coupled to-
gether. We investigate interactions between natural frequencies, coupling strengths,
coherence, coupled frequencies and relative phase of a two oscillator system. We also
discuss the application of these ideas to a 3 DH oscillator system and the additional
considerations for systems of 3+ oscillators.
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I. Introduction

Motivation

Rhythmic or oscillatory behavior is observed in natural phenomena such as heart pace-
maker cells [], central pattern generators for locomotion [], synchronization of metronomes
[], and fireflies [], flocking and schooling behavior of birds and fish [], and most interest-
ingly neural circuits []. With oscillatory phenomena all around us in nature, there is
great need to analyze and understand such behavior. Often large systems of interacting
individuals are analyzed with techniques from mean field theory, where the effect of all
the other individuals on any given individual is approximated by a single averaged effect,
thus reducing a many-body problem to a one-body problem []. While these powerful tech-
niques yield qualitative behavior (and one could argue understanding) of complex systems
such as phase transitions or the bifurcation from disorder to a synchronized state, they
do not allow the observer to peer down beneath the vale of the average behavior of the
system or to understand the individual dynamics and influences between small numbers
of individual units. Such techniques when used in isolation may rob the investigator of
key insight and intuition and may actually obfuscate the complex and rich dynamics of
these systems beyond phase transitions.

Impact

The potential impact of new detailed study of small systems of coupled oscillators can be
far-reaching. We have specific interest in their application to problems of Image Segmen-
tation & Associative Memory, both of which require variable coupling between units for
interesting computation to be performed. Mean field approaches applied to large systems,
in order to maintain their mathematical tractability have restricted systems to uniform,
undirected coupling. As a result, their activity is either completely unsynchronized, or
in varying degrees of synchronization where oscillators with commensurate natural fre-
quencies cluster first just beyond the bifurcation point. The result applied to either of
the above problems is uninteresting. In order to segment an image into multiple pieces
or categorize elements as belonging to a specific memory (as in a Hopfield Network), it is
necessary to have links between some elements stronger than others so that information
propagates through the network in useful (i.e., non-uniform) directions.

Detailed coupled-oscillator model analysis can be used to investigate behavior where
relatively small neighborhoods of densely connected clusters within larger networks dom-
inate local activity. This network topology is highly relevant in many applications. In
animal flocking behavior, Bialek et al. ?? showed in [] that the beautifully com-
plex emergent behavior starling flocks can be qualitatively reproduced in models where
each bird influenced by just 7 of its nearest neighbors, regardless of their physical dis-
tance. Human social networks have similar topological structure, where most people are
strongly connected to few others (when considering the size of the whole network) who
are likely strongly connect to eachother. Similarly, each neuron in the brain makes an
average of just 1000 connections to other neurons out of the O(100 billion) neurons in
the human brain []. These local interactions between relatively small clusters neurons
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result in spectrally-diverse, temporally-dynamic oscillatory patterns on different spatial
scales across and within different brain regions. A detailed understanding of local inter-
action and dynamics in such networks would be a large step in the direction of a better
understanding of information spread throughout these networks on the large scale.

Outline

In section II, we will discuss the nature and role of oscillatory dynamics in neural circuits,
as well as non-oscillatory models that have been devised to implement Associative Memory
and Image Segmentation. Section III contains a detailed description of the two coupled-
oscillator models investigated, the Dripping Handrail and the Kuromoto Model. In section
IV, we discuss the specific perturbations we made to the single oscillator and two oscillator
systems and the logic behind out investigations. Section IV also contains a discussion of
the synchronization metrics we report in the results section. In section V and VI, we
report the results of our simulations and discuss implications and further applications.

II. Background

Neural Oscillations

Neural Oscillations have been measured using Electrocorticography (ECoG), Electroen-
cephalography (EEG) and single electrodes implanted in neural tissue. They occur across
a wide range of frequencies and are found both localized within particular brain regions
as well as across brain regions. Alpha waves (8-12Hz) dominate in the Occipital lobe
of the brain (the house of the cortical visual system) and their same frequency counter-
part, Mu waves, exist in motor cortex. Activity is attenuated during active looking and
motion, respectively. Beta rhythms (12-30Hz) are associated with active, busy, or anx-
ious thinking and active concentration []. Delta waves (0-4Hz) are active in deep sleep
[]. Theta waves (6-10Hz) are active in Hippocampus and have been shown to encode
localization of an animal in the environment [1] [2]. Gamma oscillations (25-100Hz) have
been linked to consciousness [3] and visual attention [4] [5]. While their existence is well
established, the utility of neural oscillations for coding and computation is a contraversial
topic. Simulated networks of connected inhibitory and excitatory populations of recur-
rently connected spiking neurons (E-I Networks) have been shown to exhibit oscillatory
behaviour [16] and some researchers consider oscillations as epiphenomena which arise
from these networks.

Conversely, neural oscillatory activity is posited to be used in feature binding [6] [7] [8],
temporal coding [12] [13] (in complement to the well established rate code held as the for-
mat of the neural code since 1926 [14] [15]) and communication on different scales [9] [10]
[11]. The well known "binding problem" addresses the lack of explanation of how brains
segregate elements in complex patterns of sensory input so that they are not muddled
together, but allocated to discrete and relevant inputs from the external environment.
Neural oscillation have been argued as a mechanism to solve the binding problem because
they allow for attributes belonging to different objects to be segregated by the relation-
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ship of spikes to the underlying phase of the local field potential (LFP). The binding by
coherence theory is a specific instance of the temporal coding hypothesis, which states
that the specific timing of spikes within spike trains encodes relevant information about
stimulus and experience. The temporal code is argued to exist alongside and in addition
to the rate code, which has been shown to encode localized features of stimulus in the
average firing rate of neurons in chosen time windows.

Beyond encoding relevant information about stimulus, oscillations are thought to play
a key role in communication between neurons and neuronal populations in the brain. The
"Communication-Through-Coherence" hypothesis states that dynamic functional links
are quickly established and abolished between neuronal ensembles and brain regions by
phase coherence of oscillations between units. Specifically, neurons in A communicate
more effectively with B if their LFP oscillations are in phase because neurons in B are
closer to firing thresholds when spikes from A arrive. Conversely, the functional link be-
tween A and C is "cut" if their oscillations are out of phase with one another. Similarly,
according to a theory known as "Cross Frequency Coupling", communication between
brain regions dominated by different oscillatory frequencies can be achieved when a har-
monic relationship and phase locking exists between those oscillations. Through this
mechanism, lower frequency oscillations such as Alpha and Beta (which often dominate
higher regions in the neural hierarchy) can entrain higher frequency ones (prominent in
lower regions closer to the sensory periphery), effectively opening a communication chan-
nel for the implementation of top-down control.

Hopfield Associative Memory Network

In 1982, J.J. Hopfield [17] [18] developed a neural network model for memory storage and
retrieval. He extended the Ising model of ferromagnetization [19] to systems with all-to-all
symmetric connectivity (non-sparse W with Wij = Wji) in binary or bipolar systems (s
∈ {0, 1} or {−1, 1} respectively) and established network dynamics in which any input
state converges to a fixed point attractor by descending a quadratic energy landscape or
a Lyapunov function.

E(s) = −1

2

∑
ij

Wijsisj −
∑
i

bisi (1)

Each update of the state vector s is guaranteed to not increase the energy [17]. The re-
sult is that a Hopfield network will find the local minimum that is closest to the starting
state (measured in Hamming distance, or number of bit flips difference). The network is
constructed in such a way that local minima correspond to stored patterns.

The update rule for each unit determines whether it remains in its current state or
flips to the opposite available binary state.

si = sgn(
∑
j 6=i

Wijsj − bi). (2)

Intuitively, the above equation says that each individual neuron decides its next state by
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measuring the linear combination of all its inputs (first term) and comparing that sum to
its threshold (bi). The signum function (sgn) implements a hard-threshold or step function
that makes the dynamics of the system deterministic. If the sum of input "voltages" (in a
physiological neuron interpretation) passes threshold, the neuron will fire, taking a value
of +1. If it does not, the neuron will be inactive, taking a value of -1. Network dynamics
that adjust the s values given a fixed weights matrix W are implemented using eq. 2,
with both parallel (all neurons at once) and asynchronous (one at a time and random
order) update procedures.

Hopfield networks, also called autoassociative networks, have been predominantly used
to store and retrieve input patterns and can do denoising. Learning patterns is analogous
to digging out minima in the energy landscape. The Outer Product Rule implements
Hebbian learning to store memories, or patterns, in the weights of the W matrix. It is
given by:

W =
∑
k

sTk sk − I. (3)

where k is the number of patterns to store in the network, T is the vector transpose
operator and I is the identity matrix, subtracted off because there is explicitly no self
interactions in the Hopfield model. The Outer Product Rule can store O(N/(4ln(N)))
unique uncorrelated patterns in the weights of a network consisting of N neurons [?].
Other learning rules such as the Perceptron Learning Rule can store more patterns, but
are beyond the scope of this work. Hopfield significantly advanced the Ising model by
providing a Hebbian learning rule for the weights in eq. 3 and network dynamics in eq. 2
that guaranteed convergence to a local minima, corresponding to a stored pattern. One
drawback however of Hopfield networks is that they also store spurrious minima corre-
sponding to linear combinations of stored patterns. We postulate (section VI) that the
inclusion of oscillatory dynamics, analogous to the Dynamical Systems models discussed
in section III may untangle multiple patterns from one another within these spurrious
minima by separating them in phase of oscillation.

Spectral Clustering & Image Segmentation

Spectral Graph Theory (SGT) is the study of properties of a graph in relationship to the
eigenvalues and eigenvectors of matrices associated to the graph [20] [21]. It is closely
related to Principle Components Analysis (PCA), which elucidates the dimensional struc-
ture of a distribution of data by examining the eigenspectrum of the data’s covariance
matrix [22] [23]. In both PCA and the spectral decomposition of a graph, the eigenvec-
tors with the largest corresponding eigenvalues capture the most salient features of the
underlying data/graph. The connection between the eigenspectrum of a graph and the
dynamics of an associated coupled oscillator system is less clear, but it is reasonable to
think of the eigenspectrum of the graph as the steady state solution to the dynamics of
the coupled oscillator system with the largest eigenvectors containing the most prominent
modes of oscillation.
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In past research on image segmentation and graph partitioning using SGT, the graph
has been constructed in one of several more-or-less heuristic ways. First the Adjacency
or Similarity of graph elements is determined to be a Gaussian function (with variance
σ) of some properties of those elements:

Aij = e−
(Zi−Zj)

2

2σ2 (4)

More concretely, Zi and Zj can be greyscale intensity values at pixels i and j, the ac-
tivation of oriented localized filter bank elements, or similarity of answers to questions
asked on a questionaire for a dating website, perhaps. The first and simplest approach,
known as Average Association, simply calculates the eigenspectrum of the Adjacency ma-
trix [24]. The Adjacency matrix is symmetric with zero diagonal because connections are
undirected and self-connections do not exist.

The Graph Laplacian L additionally takes into account the degree of each node in the
graph by adding its value to the negative of the Adjacency matrix.

L = D−A (5)

The Degree matrix D is is a diagonal matrix where each entry along the diagonal is just
the row (or equivalently column) sums of the Adjacency matrix. The Graph Laplacian
has very interesting connections to random walks on graphs [25], electrical potential the-
ory [26] [32], and mass-spring systems by the duality between physical oscillators and
electrical circuits. The normalized Graph Laplacian was used in the successful and highly
cited N-cut algorithm of Shi & Malik [27].

The Modularity method [28] [29] [30] [31] has been used successfully for cluster finding
in social networks. Similar to the Graph Laplacian, it takes into account the degrees
of (or incidence into) nodes, but it does so in order to compute a "Null Model" that
is subtracted from the Adjacency matrix. The Null Model N quantifies the expected
strength of connection between nodes i and j. It is calculated by a multiplicative relation
of the degrees of nodes i and j normalized by the total degree of all nodes in the graph.
Intuitively, we expect a strong weight to exist between nodes i and j in the Modularity
matrix M if they both have large numbers of strong connections compared to the number
and strength of connections in the graph on the whole. That is,

M = A−N, where N = DTD∑
ij A

(6)

Once the Modularity matrix is calculated, its eigenspectrum is calculated, with the largest
eigenvector leading to a salient bipartition of the graph. Further (2+ segments) partitions
of a graph are possible by iterating the algorithm on subgraphs or by considering more
than just the largest eigenvector. As far as we know, the Modularity method has only
been applied to networks with no underlying topological structure. It requires a small
extension to the null model in order to apply Modularity methods to images for the task
of image segmentation. We are currently investigating this application of the method.
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III. Dynamical System
As discussed in the above section on Spectral Graph Theory, the eigenspectrum may be
an approximation of or a proxy for the full dynamics of the coupled oscillator (or electrical
network) system associated with a given graph. In order to extract structure on different
scales in an image, an algorithm which implements SGT must use multiple eigenvectors
or an iterative bipartitioning scheme along with arbitrarily chosen threshold values. Far
more neurologically plausible, a dynamical system model could hypothetically extract hi-
erarchical structure by coding it in either phase of oscillation or temporal evolution of the
system (perhaps coding gross, large-scale structure and refining the image to smaller de-
tails based up on time allowed and attentional cues). In order to investigate the dynamics
of coupled oscillator systems and gain intuition, we study two systems below.

Kuramoto Phase Oscillator Model

The Kuramoto model, introduced by Yoshiki Kuramoto in 1984 [33] [34], consists of a
mathematically tractable, mean field model of a system of N coupled oscillators with a
uniform coupling constant K between all oscillators and a unimodal Gaussian natural
frequency distribution ω,

δθi
δt

= ωi + ζi +
K

N

N∑
j=1

sin(θj − θi) (7)

where ζ is a small Gaussian noise term. This simple discrete space, continuous time
model which considers only phase of oscillators is interesting because it exhibits a phase
transition at a critical parameter setting, known as a bifurcation. Equation 7 describes a
balance between two opposing forces. The magnitude of spread of the natural frequency
distribution mediates the dispersive force between oscillators that keeps them from lock-
ing into a similar phase of oscillation. Opposingly, the strength of the coupling constant
modulates an agglomerative force imposed by the sine function that tries to cluster oscil-
lators into the same phase. For a given natural frequency distribution, there is a critical
coupling parameter value Kc at which oscillators begin to lock into the same phase. Be-
low Kc, the system is in a disordered state with the phase of oscillators evenly spread
around the unit circle. Nearby the bifurcation parameter setting, we witness oscillators
with natural frequency near the center of the normal distribution locking while ones in
the tails of the distribution remain disordered. As K is increased further beyond Kc, we
find more and more oscillators locking until eventually, for K large enough, the system
falls into the fully synchronized state with all oscillators evolving at the same phase and
mean frequency regardless of their natural frequency.

Dripping Handrail Circle Map

The Dripping Handrail (DHR) Circle Map is a discrete space, discrete time dynamical
system model first introduced to model accretion phenomena in astronomical systems [35]
[36]. The DHR model is similar to the Kuramoto model in that it exhibits phase transi-
tion in the mean field regime when the ratio of coupling parameter to natural frequency
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Figure 1: Phase Distribution and Coherence Radius time evolution of Kuramoto Coupled
Oscillator System with K > Kc

distribution (c/σw) is sufficiently large. The dynamic equation for the time evolution of
the DHR system is

xit+1 = ωi + sxit + c(xi−1t + xi+1
t )(mod1) (8)

where ωi ∈ [0, 1] is the natural frequency of oscillator i, parameter s is the slope of the
map function (0 < s « 1) and c ∈ [0, 1] is the coupling constant between oscillators. The
indices i denote the discrete spatial location of the oscillator and t denote the discrete
timestep. The dynamics of a single dripping handrail ramp up at a constant linear rate
(determined by ω for s « 1) and then reset back to zero by the (mod 1) function. For
larger s, the dynamics become a non-linear, exponential growth function that gets reset to
zero when it reaches 1. In the original model, c is a constant and only nearest neighbors
at lattice sites (i-1) and (i+1) are considered linked to oscillator i. Like the Kuramoto
model, Dripping Handrail oscillators when coupled together exhibit a phase transition at
a critical parameter value, or a bifurcation point.

Figure 2: Dynamics of a single, uncoupled Dripping Handrail Circle Map

8



IV. Methods
Our attempt to gain insight into they dynamics of and map out the state space of coupled
dripping handrail circle maps began with a detailed analysis of the state space of a single
uncoupled handrail (for c=0). The exploration of natural frequency, numerically com-
puted using Fourier analysis yielded no dependence on the s parameter for small enough
parameter values. For s parameter values larger than approximately 10−4, the natural fre-
quency of a single DHR oscillator deviated from the analytical natural frequency. After
the initial exploration, we chose a value of s = 10−7. In figure 3, we show the difference
between natural frequencies of two uncoupled DHR maps for different settings of each
map’s ω parameter value.

Figure 3: Natural Frequency Difference between 2 uncoupled oscillators

After mapping out the statespace of single DHR, we investigated a system of two
coupled DHR oscillators varying 4 parameters (ω1, ω2, c1, c2) independently. We ran 116
randomly initialized tests each one sampling 20 ω parameter values evenly spaced between
0 and 1 for each oscillaor independently and 11 coupling parameter values at increments
of 0.1 between 0 and 1 for each coupling separately. For each individual parameter set-
ting, we initialized the simulation and allowed it to run for 2000 timesteps, recording the
measurements quantities for analysis. This paradigm allows us to explore a whole class of
2 oscillator systems that display a range of interesting behavior and scale up to very differ-
ent systems with the addition of more oscillators. By varying the ω parameters, we could
explore the entire space of natural frequency relationships between oscillators 1 and 2.
By varying the c parameters together, we could explore the space of undirected (meaning
reciprocally connected) oscillator systems. By varying them separately, we could explore
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dynamics in directed networks (a phenomenon that will increase in complexity and inter-
est when networks of 3+ oscillators will be considered.

In order to quantify the synchronization of each system, we calculated three values
separately, the dominant coupled frequency for each oscillator, the coherence radius for
the system and the phase difference between the two oscillators. We calculate the coupled
frequency of each oscillator by taking the discrete Fourier transform of its position as a
function of time, shown in figure 2 and taking the frequency of the dominant peak (away
from the DC peak at 0Hz. We then report the coupled frequencies of each oscillator
individually. If they locked due to coupling, we expect that their coupled frequencies
should match. Upon thought about real oscillator systems, we discover something lacking
in the simplistic difference in frequency measure. There is a possibility of oscillators
locking when one frequency is a harmonic mulitple (i.e., integer multiple) of the other.
It seems that a better measure to capture this phenomenon would be a difference of the
modulus of the ratios of oscillators, see figure 4. We calculate the modulus-1 of the ratios
of ω1/ω2 and ω1/ω2 and plot the values on a discrete colormap indicating the percent
distance of the ratio from an integer one. White means exactly harmonic and black
means more that 10

Figure 4: Natural Frequency Difference between 2 uncoupled oscillators

Since it is conceivable that two oscillators could be locked in frequency, but at the
same time entirely incoherent - that is, locked in antiphase, we also calculate the coherence
radius. At each timepoint, the Coherence Radius Rc is calculated as

Rc(t) =
√
< cos(θ) >2 + < sin(θ) >2 (9)

where the <.> notation denotes expected value or mean across oscillator population. In
order to condense this T length vector into 2 scalar quantities, we take the mean and
standard deviation of Rc. The motivation behind this simplifying transformation is that
given a sequence long enough for oscillators to lock, their locked dynamics will dominate
when timepoints are averaged over. Consequently, the mean Rc value will be large and
the standard deviation will be small. Conversely, systems that do not lock will have a
middling range average Rc value and a relatively large standard deviation. Systems that
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stand on the border of punctuated coherence (locking and unlocking repeatedly) will have
a large standard deviation as well. The measure unfortunately breaks down and fails to
provide useful information about a system that has separate populations of oscillators
locked into antiphase or into different phases around the unit circle. The coherence ra-
dius of two antiphase oscillator populations is exactly the same as a completely random
distribution of oscillator phases.

Lastly, we calculate the mean and standard deviation on the phase difference between
two oscillators to ascertain whether they are locked in a stable phase relationship whether
that relationship is in-phase, anti-phase or 37◦ out of phase. This measure provides
information where coherence radius fails. It also provides some information about the
frequency relationship between oscillators - namely, if the standard deviation of difference
in phase is zero, they must have the same frequency. It also, however, breaks down in the
case of harmonic frequency relationships. In this case, it may be more informative to look
at the distribution of phase relationships. It the distribution is multimodal, the number of
peaks would tell the frequency relationship between oscillators. This measure also suffers
from combinatorial explosion when you consider systems of many oscillators because a
phase difference necessarily involves pairs of oscillators. In a system of N oscillators,
you have

(
N
2

)
pairs of phase differences. While they work well for the simple 2 oscillator

systems considered within, our analysis techniques must be extended if they are to remain
useful in the detailed analysis of general coupled oscillator systems.

V. Results
Though we have taken data for a wide range of parameter settings in two DHR oscillator
systems, the limited amount of time alotted for the project limits the amount of analysis
that we could do. Consequently, we looked at some "sanity check" measures that woul
alert us to fundamental problems in our approach or the code and then some simpler
parameter combinations. We set fixed undirected coupling (c1 = c2) while varying the
natural frequency of oscillators separately. Also, we fixed natural frequencies and looked
at the reliance of our three measured quantities (frequency, phase and coherence radius)
for varying coupling parameters. We have not yet looked at directed (i.e., unequal) cou-
pling between oscillators. Likewise, we have not sufficiently explored harmonic frequency
interaction between oscillators.

(a) Phase Difference (b) Coherence Radius

Figure 5: Uncoupled Oscillators with Natural Frequencies ω1 and ω2

Figure 5 displays the mean and standard deviation values both computed across the
2000 timesteps of each trial and then averaged across 116 trials. We can glean some
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insights from these first few plots. Both phase difference and coherence radius are highly
variable for two uncoupled oscillators with different natural frequencies. Conversely, both
measures are highly structured (with zero variance) for uncoupled oscillators with the
same natural frequency. Since they are uncoupled, the mean phase difference and Rc

values are dependent on initial conditions of the simulation. The black diagonals in the
standard deviation plots are most telling.

Next, we looked at difference in coupled frequencies for oscillators as a function of the
natural frequency of each oscillator for fixed coupling parameter values. There is some
very interesting structure in the series of plots in figure 6. The plot in a, where c=0, is
a recapitulation of the plot in figure 3. Black areas in the plots show (ω1, ω2) parameter
values that result in frequency locking for the given coupling parameter value. The off-
diagonal black structure results from the circle map having identical natural frequencies
for ω values symmetric about 0.5. That X structure migrates to smaller frequency values
as the coupling parameter is increased and is replaced by a larger, noisier off-diagonal
structure. When the coupling parameter goes to 1 in f, the basin of attraction of natural
frequency parameter settings that result in frequency locking has increased. In figure 7,
we plot the modulus-1 of the ratio of coupled frequencies to see the space in which cross-
frequency coupling may work. Brighter spots denote harmonic structure in the coupled
frequencies of the two oscillators.

(a) c=0 (b) c=0.3 (c) c=0.4

(d) c=0.6 (e) c=0.8 (f) c=1

Figure 6: Coupled Frequency Differences ∆ω = |ω1 = ω2|

In figures 8 and 9, we see that there is very interesting structure that becomes more
pronounced as coupling strength is increased. Uncoupled phase and Rc plots recapitulate
figure 5. In these plots we can see the evolution of phase relationships and coherence
radius as the coupling strength between oscillators is increased. In figure 8, we see that the
oscillator with higher resonant frequency leads in phase the oscillator that it entrains. The
phenomenon beomes more pronounced for stronger coupling. We also see in figure 9 that
the coherence radius synchronization measure increases in intensity and size (essentially
synching oscillators with more disparate natural frequencies) as the coupling parameter
increases in strength.
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(a) c=0 (b) c=0.3 (c) c=0.4

(d) c=0.6 (e) c=0.8 (f) c=1

Figure 7: Coupled Frequency Ratios (Harmonic Frequency Structure)

(a) c=0 (b) c=0.3

(c) c=0.4 (d) c=0.6

(e) c=0.8 (f) c=1

Figure 8: Coupled Oscillator Phase Relationship Statistics (Mean & STD)

VI. Discussion
While we have only just scratched the surface of what is possible and necessary in the
detailed analysis of systems of coupled oscillators, we have found some interesting activ-
ity. The synchrony measures must be generalized and suitably adapted to convey useful
information about larger more complex systems. We would immediately next like to look
at a system of 3 coupled oscillators. This system has new and immensely interesting
dynamics that would yield benefit if explored in detail We can investigate the tug-of-war
system to analyze the synchronization of one intermediate oscillator when it is pulled by
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(a) c=0 (b) c=0.3

(c) c=0.4 (d) c=0.6

(e) c=0.8 (f) c=1

Figure 9: Growth of Basin of Coherence Radius with increased Coupling

two oscillators in opposing frequency directions with differing coupling strengths. We can
look at the mob system and investigate how much more effective two locked oscillators
are at recruiting other oscillators to their agglomeration. Finally, we can look at directed
couplings with 3 oscillators where a loop of influence can be created and the system can
enter some kind of ring-around-the-rosie dynamics.

I mentioned early in this work that variable coupling strengths are key to interesting
computations being done in associative memory models and image segmentation algo-
rithms. Starting from our small detailed analysis of the state space of these oscillatory
systems, we would like to build up complexity to investigate the possibility of Hopfield-like
associative memory storage in small systems of coupled oscillators (even 5 or 6 could yield
some interesting and telling results). Perhaps such an oscillatory Hopfield network could
separate stored patterns from one another into different phases of firing when presented
with a mixture of stored patterns as input.

We would also like to investigate the usefulness of coupled oscillator models in appli-
cations of image segmentation. We postulate that the oscillatory dynamics of a properly
primed connectivity network could segment images into salient regions by phase of oscil-
lation. We propose this hypothesis as a method by which coarse segmentation of images
can occur even as low down in the visual processing chain as retina. Gamma oscillations
in retina, perhaps caused by the interaction of excitatory Rods/Cones & Bipolar cells
with inhibitory Amacrine & Horizontal cells, may mediate this low level computation and
processing of visual input by giving individual neurons temporal texture for the individual
spikes they fire. In short, where a neuron lays down a spike in relation to the underlying
retinal gamma oscillations can link sensory inputs eminating from a single external cause.
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It is the larger goal of this investigation to understand how such a coding scheme could
function and to build a model of its operation.
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