An Optimal Control Model of Zebra Finch
Vocalization

Mike Schachter *

Helen Wills Neuroscience Institute
University of California, Berkeley
Berkeley, CA 94720
mike.schachter@gmail.com

Abstract

In this work, a nonlinear oscillator modeling the syringeal folds of the Zebra Finch
is controlled by the state of higher level linear dynamical system. We formulate
an optimal control cost function and solution for the learning of bird song.

1 Introduction

First we’ll discuss the Zebra Finch vocalization system and it’s mathematical formulation, and then
the control of that system. All code used to generate figures and results in this paper can be found
at:

http://github.com/mschachter/birdy

1.1 Zebra Finch Song

The Zebra Finch is an oscine songbird, it vocalizes complex sounds in order to defend terroritory
and attract mates. A male juvenile Zebra Finch learns a unique song within 90 days of hatching,
usually from his father.

The song of a Zebra Finch is organized hiearchically. At the largest time scale is a repeating motif
that lasts 500-1000ms. The motif is comprised of smaller 20-50ms subunits called syllables. The
syllables are comprised of sound primitives such as frequency sweeps, noise bursts, and harmonic
stacks, collectively called fones. Figure [I)illustrates an example of a typical Zebra Finch song. For
this project we have focused on the time scale of sound primitives, and more specifically the class
of harmonic stacks.

1.2 The Zebra Finch Vocalization System

Like human speech, Zebra Finch song is generated at it’s source by oscillations in airflow generated
by vibrating vocal cords [3]]. Figure [2]shows the Zebra Finch synrinx.

Each syrinx is modeled as a symmetric pair of nonlinear mass-springs. A model for these nonlinear
oscillations is taken from [4]:

="

0= Yo+ 2 Bx — vad — yxtv + +2x? — yav 1)

*With a metric ton of help and code from Hédi Soula: hsoula@gmail.com

http://github.com/mschachter/birdy

6000 F

N
o o
S o
o o

=)

Sound Pressure

|
N
s}
=3
=)

—4000
0.

8000 IR I I il M e i e LG

|
6000 - N il M
i

Frequency (Hz)

o0 AN AW, B R 0 il 1 | | ‘ -, Hhid
T FLA f Wy ‘ . 'M Iy
A1 ik Wl [f] ‘ k ‘ ighib
ool N i . il ‘U i \ A e i |
ol FIATORILL ! TR e |
B.O 0.5 1.0 15 2.0

Time (s)

Figure 1: Zebra Finch song, the sound pressure waveform (top) and associated spectrogram (bot-
tom).

Figure 2: The Zebra Finch synrinx, with two independently controlled vocal cords. Taken from [3]]

The control parameters of the model are o and 3. v = 23500 is a constant. The control space has a
rich bifurcation structure, with both Hopf, homoclinic, and saddle-node in a limit cycle bifurcations
leading to the birth of oscillations, as illustrated in figure[3] The type of bifurcation that occurs can
determine the overall spectral content of the sound produced, as noted in [4]].

1.3 Control of the Syrinx Model

The goal is to control the parameters « and 3 in order to produce an observed vocalization. Let
@(t) = [o(t) B(t)]" be the state vector.

Assume that the temporal evolution of ¢(t) is defined by a controlled linear dynamical system:

d) = A(d)(t) - ¢Test) + ’U,(t)

. .
N .
005+, .- 1
"... . . O[T
A. AU TR | ;
o - 5]
2 h. ~ , -. \\
@_ L. 0. -~ i 1 - - 008 \\
________ RERRTU S U B 03
) - .
oo A3, 1 o .
R PR
: L S
........ I H
: . [
* =y
035k H ‘-——1? Ao @
0 008 el
o . 06
0.15 4
e
2 B
0.2 0.8 -04 06 -0.2 0.6

Figure 3: A bifurcation diagram with trajectories, taken from [4]. The red line is a Hopf bifurcation,
the dashed black line is homoclinic, and the dotted blue line is a saddle-node bifurcation. Paths A
and H represent trajectories that produce Hopf and Saddle-node in a limit cycle bifurcations.

where A is a 2x2 matrix, chosen to make the passive dynamics of the control system decay to some
physiologically relevant rest state ¢,.cs:.

We discretized time to simplify the analysis. Let A7 be the time step for simulation of the control
system, and define ¢, = kA7. Also define ¢, = ¢(t1). Note that the time step for the simulation
of the control is significantly larger than that of the oscillator. In practice we used the discrete time
map representing the control system as given by the forward Euler step:

¢k+1 = (A (d)k - (,brest) + uk) AT + d)k (2)

In optimal control theory [5]], a cost function is specified and is to be minimized over time to produce
an optimal control law. But what form should the cost function take? We’ll make the following
assumptions:

1. The control wants to keep the system’s instantaneous energy low: qbgqﬁk.

2. The control wants to keep it’s own instantaneous energy low: u” u

3. The control wants to produce an instantaneous fundamental frequency that matches that of
a stored template.

To elaborate on the last assumption, say we are the given time-varying fundamental frequency of a
song syllable that we would like to learn, represented as the function F'(¢). Let:

F=g(on) 3)

be the function that gives the steady state fundamental frequency for a given control ¢;. The func-
tion g can be empirically estimated through simulation and approximated through interpolation. To

follow this frequency means to keep the quantity (F(t,) — g(¢y))> small.

Given these assumptions, the cost at time ¢ of applying control w is:

O (P w) = @f b+ uTu+ (Ftegr) — g(drr1))”

Let N be the number of time points we want to control, and let w; = {u;(¢;), ..., un(¢n)} be the
control law applied from time j to time N. Note that the control law is a sequence of functions! Each
control uses feedback information about most recently observed state. The total cost of applying a
control law 7y given initial state ¢y is:

N
v (o m0) = > _ L (P, u)
k=1

1.4 Dynamic Programming Solution to Optimal Control

The optimal cost-to-go is a function that represents the total cost from a time j to time [V given that
the optimal control function is applied:

N
J k‘:]

Dynamic programming is typically used to solve for the optimal cost-to-go [[1]. When applying DP,
we work backwards in time, creating a recursive algorithm that determines the functional form of
the entire optimal control policy 7. To illustrate this, we are going to take /N = 2 with a specified
initial condition ¢.

First the solution must be found for N = 2:

05 (¢2) = min bz (¢, us)

A straighforward but expensive way to solve would be to perform a search over a grid of values
for ¢»o. For each value on the grid, we then will use gradient descent to minimize {5 (¢2, us) with
respect to uo. The end result is that we have a lookup table of values, giving us a function us(¢2),
and a function v} (¢2).

The optimal cost-to-go at time N — 1 = 11is

vy (¢1) = min (61 (@1, u1) + 05 (¢2)] 4

We know the functional form of ¢; (¢b1, u1) and the numerical form of v3 (¢p2). We also know that:

G2 = (A1 +ur) AT + ¢

so we can again use gradient descent for a grid on ¢; to create a lookup table for uq(¢1) and
v} (¢p1). We now have a functional form for the optimal control policy: 7§ = {u1 (1), u2(d2)}

Now going foward in time, with the knowledge of a start state ¢y, we can compute ¢, and then
the optimal control u; (¢1). Given u;, we can then compute ¢ and then uo. The technique is
generally applicable for any N.

1.4.1 A More Efficient Implementation

Solving the dynamic programming problem at a time ¢; requires finding a function w(¢y) that
minimizes vi(¢y) for any ¢, € P, where P is a pre-specified set of realistic values. This re-
quires us to uniformly sample from P and solve an optimization problem for each sample, a very
computationally expensive prospect!

To reduce the computational burden, we first model the function w(¢4) as a linear combination of
M radial basis functions {11, ..., ¥ss }. Each basis function takes the form:

_ 0.2
i) = exp (W) 5)

0;

where 0; is the center of the basis function, o; is the bandwidth of the basis function. Each basis
function is multiplied by a coefficient ¢; = [¢; ciz]T. Let C = [ey, ..., cpr) be the 22 M matrix of
coefficients, the control is computed for a given C' as:

M
ui($r, C) = > chi(¢n) (6)
i=1

We then formulate a single optimization problem to minimize the sum of cost across all points in P
for a given C":

C* = argmin Z vg (o, C) @)
PP

The optimal control at time ¢, is then given as uy(¢g, C*).

To create an initial guess for the optimization problem, each ¢; is initialized independently by finding
the minimum cost control at 6;, the center of basis function :

c? = argmin v (0;, ¢;) 8)

ci

2 Methods and Results

2.1 Simulation

Equation (T)) was implemented in C++ and utilized the GNU Scientific Library. It was accessed and
simulated using Cython/Python. The integration method used was an 8th order Runga-Kutta method
[2]] with a step size of 1 us. A GUI was created using PyQT in order to examine the dependence of
oscillations with the control parameters, as shown in figure]

2.2 Mapping Controls to Fundamental Frequency

Equation (3) maps a control ¢ to a steady-state fundamental frequency F, and required simulation
to determine. First, a grid of points was constructed that spanned o € [—1.25,0.05] and 8 €
[—1.10, 1.10], with a spacing of 0.05. For each point in the grid, the oscillator was simulated with a
zero initial condition and the control specified by the grid point, for 15 ms.

The power spectrum of the resluting oscillation was taken and the fundamental frequency F was
identified as it’s maximum. This produced samples for a real-valued function of two variables.
These samples were fit with a radial basis function implementation from SciPy with a bandwidth
0.8 and Gaussian kernel. A RBF kernel was placed at each of the sample points, and allowed for
a continuously-varying representation of equation (3). The sampling and it’s RBF interpolation are
shown in figure 3]

Model | Tab 2

Oscillator Parameters
Model:

Normal

X(0): (0.0
v{0): (9.0 :1)(;
235
-10
plobay)-0.417690 ~10000 0.005 0,010 0015 0,020
T Tlme(s)
L
9\\\\\H \\\\H\I AR
-~ LA ‘FN‘ .NJ‘NHW il \W TN ‘
30080555 0.005 0,010 0,015 20

— Time (¢

Simulation

stepSize: [,000001
Duration: [0.020

Simulate

0.000 0.005 0.010 0,015

Figure 4: The UI for the simulation environment.

Fundamental Frequency Interpolated Fundamental Frequency

8000

7000

6000

5000

Alpha
Alpha

4000

3000

2000

1000

Figure 5: The simulated steady-state fundamental frequency as a function of control (left), and it’s
interpolation by radial basis functions (right).

2.3 Optimal Control

The first step in solving the optimal control problem was to choose the passive dynamics of the
system defined by (2). We chose the following matrix:

~1000 0
A:[0 900}

and specified ¢t = [—0.30 0.30]T, a value where only one stable fixed point exists and no oscil-
lations can occur. The passive dynamics had the phase plot specified in figure [§] The values of A
were specified such that both a and 5 decayed to their rest points within 10ms.

Once the passive dynamics were selected, we applied the algorithm described in sectlon- 1.4.1] First,
we created a grid of points for w that spanned [—1,1]X[~1, 1] C R?, with a spacing of 0.25. Each
point in the grid was a center 0; as listed in equation ®). The bandwidths were chosen uniformly as
o; = 0.30.

Meta-control Phase Plot

15
10 . \ \ - - 7 : A
LI AR T 2 S A
NNV Y A S
S NNNN NN VA A x
0.5k O R e e e e]
e i e Y A s il e
i LA AN I B NI NI NI NS
2 ook RSOl R U N N U, S S B i
g = AV A S T U U W N
PRV N RN O S O WY
0.5} - : 4 - - A -~
7 7
-10f Hoifle fo i / 1
ARV AV A A A
RV B AV B T N A R RN R N R A RO N PR
137 =) 10 ~0s ~06 Yy ~02 00 0.2

Alpha

Figure 6: A phase plot for the passive dynamics of the control system. Color indicates magnitude,
red is large, blue is small.

In the next step, the desired sequence of fundamental frequencies was specified with a sample spac-
ing of 1ms. The last frequency in the sequence was selected, and the dynamic programming opti-
mization began.

The goal of the DP algorithm, for a given time step, was to determine the matrix C* of equation (7).
C* was then used in equation (6)) to determine the optimal control.

Because the optimization problem of (7)) is (probably) difficult and (possibly) nonconvex, and def-
initely expensive, the first step was to find a good initial guess for each element of C*. So we
evaluated a locally-optimal value at each center, solving the optimization problem specified by equa-
tion (8). This was accomplished using gradient descent, with an initial guess of ¢! = [0 O]T. All
gradients were computed using a finite-difference approximation.

Once C was initialized, we then ran the full optimization of equation (7). We only let it run for 10
iterations, with the intention of actually getting at least one result before the due date of this project!

The technique above was applied to the last time point. Using dynamic programming, we then
solved for the second-to-last time point, applying a recursion to the cost similar to that shown in
equation (@). The time for optimization increased linearly as a function of how far back in time we
went, as shown in figure|[7}

Given time constraints, we only had the opportunity to apply the equation to a single example, that of
a constant desired fundamental frequency of 3000Hz for 10ms. The total time to solve this problem,
computed as the cumulative sum of the times in figure|/| was 314 minutes.

For each time point, we determined the form of the function specified in (6). One such example of
this function is shown in figure |8} Some explanation is in order. The upper left is the optimal cost-
to-go function vy, (¢). It shows that the most expensive states are those that produce a mismatch of
the fundamental frequency (see figure [5).

The lower left panel shows the value of ug for a given value of ¢. Strongly negative values of ug
will push « to be significantly more negative. The control at this time point seems to have the ability
to push « to two different regions of the space, to the extreme left and to the extreme right. Given
that time has run out to check for bugs, we can only hope that this makes sense...

Optimization Time (minutes)
w
8

10 9 8 7 6 5 4 3 2 1
Time Point

Figure 7: The computation time for optimization at each time point.

Optimal Cost Surface

280000

240000 ~100

200000
-200

Beta

160000

Optimal Control 2

120000 —300

80000
-400

40000

0.6 0. — —400 =350 =300 250 —200 ~150 ~100 =50

0.8 —
Alpha Optimal Control 1

Optimal Control 1

Optimal Control 2
-100
-150
-200

10
0
-60
05
-120
-180
0.0
—240
-300
-300 -0.5 -360
-350 -420
-10 -480
-400 -
-1.2 -1.0 -0.8 0.6 -0.4 -0.2

Beta

-250

Alpha

Figure 8: Upper Left: the optimal cost-to-go function at time point N = 10. Upper Right: the op-
timal control vector elements plotted against eachother. Lower Left: optimal control 1 as a function
of ¢. Lower Right:optimal control 1 as a function of ¢.

The lower right panel shows a tendency for the control u; to push [into a negative range, dependent
on the value of . It’s probably best not to over-interpret this figure in the absence of a more rigorous
analysis of bugs. The upper right panel shows ug vs u1, showing a very much nonlinear relationship
between the two.

You may ask yourself at this point, “does it work”? The answer for now is “not yet”. Figure [J]is
a spectrogram of a 10ms simulation for the optimal control law applied to a given initial condition.
There’s plenty of power in the 3000Hz range, but clearly the fundamental frequency is closer to
1000Hz. More debugging is necessary!

7000 Bl

6000 1

5000

4000

Frequency (Hz)

3000

2000

1000

0.000 0.002 0.004 0.006 0.008 0.010
Time (s)

Figure 9: A spectrogram for an optimally-controlled vocalization.

3 Conclusion

This work was an exciting foray into the world of nonlinear oscillators and optimal control theory.
It’s a work-in-progress, setting the stage for my thesis work, which will require the generation of
synthetic Zebra Finch syllables.

The basic idea for future work will be to identify the motor primitives” of Zebra Finch song. These
motor primitives are the motor commands, i.e. the feedback control functions uy (¢), that dictate
the spectral content of a song for durations of 5-10ms.

The major bottleneck right now is computation. The dynamic programming algorithm takes a long
time. There are many ways to speed it up. Some ways to do so may include coming up with
a better parameterization for the control functions than RBFs, faster generation of initial guesses,
implementation of an analytic gradient (if possible), and an optimization algorithm such as scaled
conjugate gradient descent that should converge faster.

Note that there was no actual feedback used in this work. The Zebra Finch auditory system can-
not provide sensory feedback in less than 20-50ms, which is often longer than the duration of the
syllable. Instead of using feedback, we predicted the fundamental frequency through an emprically
estimated function (equation (3)). We used what is called a corrolary discharge, a copy of the motor
command, and ran it through a forward model, a model that takes a motor command and produces
a prediction of the output state. By doing so we formulated the error in the predicted fundamental
frequency, and tried to minimize that error.

The use of forward models and corrolary discharge is very general and has been used to implement a
Zebra Finch learning model in [6]. We hope to extend this methodology to sound features that span
longer periods of time. The idea would be to start building associations between the properties of a
syllable at several time scales, and in doing so actually simplify the function form of the feedback
control laws. We can begin to explore the various timescales that make learning easier, and explore
their representation by neurons in the Zebra Finch auditory cortex.

Acknowledgments

Thank you to Hédi Soula, who created a C++/Python implementation of this model in our lab and
has provided ideas, expertise, and feedback on this project. A thousand thanks to Jim Crutchfield,
who facilitated an excellent NCASO course and offered lots of advice on this project.

References

[1] BERTSEKAS, D. P. Dynamic Programming and Optimal Control. Athena Scientific, 2000.

[2] DORMAND, J., AND PRINCE, P. A family of embedded runge-kutta formulae. Journal of
Computational and Applied Mathematics 6 (1980), 19-26.

[3] MINDLIN, G. B., AND LAJE, R. The Physics of Birdsong. Springer, 2005.

[4] S1TT, J. D., M, E., ARNEODO, GOLLER, F., AND MINDLIN, G. B. Physiologically driven
avian vocal synthesizer. Physical Review E 81, 031927 (2010).

[S] ToDOROV, E., AND JORDAN, M. I. Optimal feedback control as a theory of motor coordina-
tion. Nature Neuroscience 5 no 11 (2002).

[6] TROYER, T. W., AND DOUPE, A. J. An association model of birdsong sensorimotor learning
i. efference copy and the learning of song syllables. J. Neurophysiol 84 (2000), 1204—1223.

10

	Introduction
	Zebra Finch Song
	The Zebra Finch Vocalization System
	Control of the Syrinx Model
	Dynamic Programming Solution to Optimal Control
	A More Efficient Implementation

	Methods and Results
	Simulation
	Mapping Controls to Fundamental Frequency
	Optimal Control

	Conclusion

