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ABSTRACT 
Strong oscillations present in local field potential (LFP) recordings at specific frequencies 
are thought to be involved in behavior, communication, and coordination across brain 
areas. In this dataset, the use of inter-regional phase differences to control a brain-
machine interface (BMI) is studied. The task is a one-dimensional two-target task where 
phase differences extracted from distal electrodes in left motor cortex (M1) and right 
dorsal pre-motor cortex (PMd) at a frequency of 30 Hz is mapped to velocity of a cursor. 
The subject is able to volitionally control the cursor, and we model the strategy he uses 
with a coupled oscillator model. By comparing the model to the measure phase data using 
information theoretic values, we concluded that that the volitional control of phase is not 
well accounted for by coupling strength of oscillators and Gaussian noise alone.  
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I. Introduction 
Low frequency oscillations in vivo have been measured with invasive methods 

such as cortical electrode local field potentials (LFPs), less invasive methods such as 
electrocorticography (ECog), as well as non-invasive methods such as 
electroencephalography (EEG). Oscillations are present in all measurement modalities 
and are prominent in  specific frequency bands during stereotyped behaviors. One often-
reported oscillation in motor cortex is termed the ‘beta band’ (20-40 Hz) and occurs 
during initiation of movement, dexterous movement, and motor cortex controlled brain-
machine interfaces (Fetz, 2013). Theories postulating the role, of oscillations in neural 
computations are widespread, but few have investigated experimentally the robustness of 
these recorded oscillations. While they are certainly well reported, how sensitive they are 
perturbation and how strongly coupled they are across distal regions of the brain has not 
been explored. In this project, I explore a dataset where we implement an operant-
conditioned paradigm in the form of a brain-machine interface to determine if phase 
coupling can be volitionally controlled. Phase across hemispheres was shown to 
volitionally controllable.  

In this report, the phase difference used to drive the BMI in the experiment was 
modeled using a coupled oscillator dynamical system. System parameters were fit to 
minimize discrepancy in information theoretic values between the measured and 
simulated data. Epsilon machines were then calculated using the sub-tree algorithm to 
analyze and compare the causal states of both processes. The conclusion was that the 
coupled oscillator model while matching the basic information theoretic values of the 
phase BMI process did not account for the low entropy rate and high excess entropy, and 
another model was suggested for analysis.  

II. Background 

Mechanisms of neural computation are heavily debated. While the neuron and its 
action potential are accepted as the units of computation in the brain, the manner in which 
neurons work together to encode and transmit information through their action potentials 
is unclear. However, an emerging hypothesis is that low frequency oscillations in the 
brain may represent summed neural assemblies working together synchronously. Neurons 
firing synchronously have been postulated to have been postulated to enable 
communication across distal brain regions, may be involved in hierarchal processing, and 
may also be a physical manifestation of internally-directed attention in the brain.  

Some the most powerful evidence for the low frequency oscillations containing 
relevant neuron information comes from in vitro cortical slice preparation. In particular, it 
has been found that when slow (0.5-1.5 Hz) oscillatory electric fields are applied with 
parallel plates across a cortical slice neurons in the slice tend to modulate their spikes 
such that their interspike interval matches the period of the global oscillation. If these 
oscillations were irrelevant to neural spiking, it is highly improbably that organization 
around the oscillations would occur. Other studies using pharmacological agents have 
shown that in slice, very specific frequencies can be generated ranging from slow delta 
waves (~1Hz) to faster gamma waves (~60Hz) (Roopun et al., 2008). The frequencies 



Preeya Khanna, PHYS 256 Final Report 

generated are not arbitrary, but rather tend to match the same measured frequencies bands 
strongly present in in vivo systems. One effect from neurons reorganizing their firing rate 
with respect to the ongoing global oscillation is that spikes exhibit a preferred phase. This 
effect has been shown in vivo as well, where place cells in hippocampus fire at a specific 
phase of the ongoing theta (8-12 Hz) oscillation (Buzsaki and Draguhn).  

The relative phase of ongoing oscillations has been shown to be relevant not just 
in hippocampus place cells, but across motor cortex as well.  In motor cortex, spatial 
travelling waves of beta oscillations have been shown to propagate in primary motor 
cortex (M1) and dorsal pre-motor cortex (PMd) during motor preparation (Rubino et al., 
2006). However, what remains unclear is how tightly coupled oscillations that arise in 
different areas are to each other, and what role if any such phase-locking plays in neural 
computation.  

To study phase locking of oscillations in vivo, a closed-loop brain-machine 
interface (BMI) task was used. In this setup, subjects receive feedback of their neural 
activity mapped into a task, and are rewarded for specific neural modulation patterns. 
Canonically, BMI has relied on modulation of the firing rate of single neurons. However, 
volitional modulation of low-gamma LFP power has recently been demonstrated. This 
result inspired the use phase of LFPs as a BMI control signal to: 1) determine if it is 
possible to modulate the phase relationship of ongoing LFPs, and 2) to probe the degree 
of flexibility of these relationships across motor cortex. In this ‘Phase-BMI’ task, phase 
differences between two distal regions of motor cortex control the velocity of a cursor 
confined to moving on a one -dimensional line toward targets for a liquid reward. Below 
is a figure illustrating the task setup.  
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The subject was able to acquire a significantly higher number of targets than he 
would by chance. Data from a session of peak performance is analyzed.   

III. Dynamical System:  

I. Overview: In this project I used data from the best session (most targets 
obtained in 10 min) of a subject performing Phase-BMI at 30 Hz. I first investigated my 
data by calculating the entropy and mutual information of the phase distributions that I 
emerged with. I then investigated coupled oscillator models and selected parameters to fit 

	
  
Subject has recordings from L 
M1, R PMd and the phase of 
these is calculated using a 
chirplet transform. Phase 
difference between the 
electrodes is mapped to cursor 
velocity. The subject attempts 
to modulate the cursor either 
left or right.  
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my data to a coupled oscillator model. I then interpreted my fit model and real data by 
evaluating their underlying epsilon machines, statistical complexity, and entropy rates.  

II. Description -- Coupled Oscillators: Coupled oscillator models have been used 
to describe phase interactions of neural oscillations by many (Cadieu and Koepsell, 2010; 
Canolty et al., 2010). In its simplest form two coupled oscillators can be described by the 
following dynamical system:  

 

 

Here  is the center frequency of the oscillator,  is the coupling strength between 
oscillator i and oscillator j (this term has directionality – 	
  is the effect of oscillator j on 
oscillator i),  is the natural phase offset between oscillator i and oscillator j and  is 
the noise term. 

This dynamical system is a natural one to consider when since trying to 
understand phase differences between oscillations. If a coupled oscillator can be fit well 
to data, understanding of phase interactions between different parts of the brain can be 
interpreted as changes in coupling strength, natural offset, and noise coefficients. One 
way to interpret this Phase –BMI task in terms of the coupled oscillator is model is to 
attribute the synchrony of two channels to the coupling strength , interpret  as a value 
that shifts depending on which target is present (see below), and  as an aggregated 
value accounting for the stochastic nature of neural activity and possible electrical noise 
in neural recordings.  
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Histogram showing the 
distribution of phase 
differences during reaches 
to the right target and 
reaches to left target. A 
coupled oscillator model 
could reflect this shift by 
taking different values of 

 for each reaching 
condition.  
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IV: Methods 

Fitting the coupled oscillator model optimally was not an avenue that was heavily 
investigated. Closed-form maximum entropy derivations are fleshed out in literature 
(Cadieu and Koepsell, 2010). Instead, the model was simplified by setting , and 

. Fit of the model was then evaluated by comparing it to real data, using 
entropy and KL divergence as a metric of similarity. Since the goal was to better 
understand underlying states in phase differences during BMI, as long as the model 
produced a distribution that resembled the one from data, the outcome would be 
informative. 

After fitting the model, the underlying states of both processes were investigated. 
To do this, data was partitioned using a task-relevant division. Phase differences greater 
than zero move the cursor to the right (and were coded as a ‘1’) and phase differences 
less than zero move the cursor left (and were coded as a ‘0’). Underlying causal states 
were then calculated using the subtree algorithm.  

V: Results 

I. Information Theory Values: There are two channels; electrode 1 and electrode 
2. To control the BMI task in realtime phase for both channels was calculated, and their 
difference was recorded. 

 Entropy – When considering individual channels, since phase is a circular 
variable with respect to an ongoing oscillation, I expect that the entropy of the phase 
distribution for a single channel will be largely uniform. For channels 1 and 2 shown 
below, the entropy of both distributions is 5.9069 bits, which is equal to maximum 
entropy of - log2(1/n).   

 

On the other hand, when the difference between the phases is considered (below 
right), there is certainly more information. The entropy of the phase differences is 5.4454 
bits. Clearly, there is more information in considering the difference between phases than 
in just considering phases themselves.  
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Mutual Information –It appears that there is information contained in the 
differences between the phases of the two channels, and we can quantify that by 
calculating the mutual information between them. The mutual information between the 
two distributions is 0.7055 bits. For visualization, the joint distribution, of both channels 
is shown above (left). Clearly the channels are frequently in synchrony illustrated by the 
lighter diagonal line indicating a higher probability that both channels are the same value. 
Also note worth are the top right and bottom left edges, indicating that when the channels 
are not synchronized, they are likely to be fully un-synchronized. The low amount of 
mutual information means that there is still quite a bit of randomness in each channel, 
such that H ( channel 1 | channel 2 ) = H ( channel 1) – I ( channel 1 ; channel 2) = 
5.9069 bits - 0.7055 bits = 5.2014 bits. Thus the entropy of the phase of one channel 
given that we know the phase of the other channel (5.2014 bits) is lower than the entropy 
of the difference between the two channels (5.4454 bits). This is interesting because 
knowing the phase of one channel gives more information about the phase of the other 
channel, than just knowing that the two channels in general happen to be synchronized 
frequently.  

II. Fitting the Dynamical System 

Below are some brief results from fitting the dynamical system to the data:   
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Generally as coupling increases, the entropy of the distribution drops, which is expected 
since as coupling occurs, the difference in phases will become less random and more 

Fitting Fig 1: Effect of different 
coupling terms and noise terms 
(blue: =1000, red: =1500, 
green: =2000) on the entropy 
of the phase difference 
distribution. Entropy of real data 
is shown as a black dotted line.  

	
  

Fitting Fig 2: KL divergence 
between real and simulated data 
as a function of increasing noise. 
Each condition was simulated 100 
times (red bars are standard 
deviation). A noisier coupled 
oscillator produces distributions 
more similar to actual data.  

	
  

Fitting Fig 3: KL divergence 
between real and simulated data 
as a function of increasing 
coupling. Each condition was 
simulated 100 times (red bars are 
standard deviation). There 
appears to be a minimum 
representing the lowest KL 
divergence around a coupling 
strength of 150  
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consistently zero. I approximated the best parameters that matched the data as  = 100, 
 = 1000, and  = 0 (for baseline data – not reaching to targets in either direction). The 

output of the coupled oscillator with these values is shown below:  

 

Absolute phase of Channels 1 and 2 (left, center), and difference of phases (right). 
Below is real data and simulated data (same as above, right) plotted together. 

 

Finally, a comparison below of the time-series trajectories of difference of phase for real 
(left) and simulated (right) data. One obvious difference is the way in which real data 
smoothly varies, and simulated data appears more ‘jittery’. Since much of the variation in 
the simulated model is from the Gaussian noise term, there is not consistency from time 
point to time point. On the other hand, the real data (left) appears to have much stronger 
structure where variation is not due to noise since each point is well correlated with 
points near it.  
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The subtree method with a morph length of 3 and tree depth of 5 was used to estimate the 
epsilon machine. These short lengths were initially chosen to quantitatively investigate 
the obvious differences between real and simulated data in their smoothness.   

  

 

The above machines illustrate the qualitative observation concerning the difference 
between the real and simulated data. The huge differences are reflected in the differences 
between entropy rates. For the simulated data, the process is much more random for each 
time point compared to the real data. The excess entropy of the machines is also 
reflective of the different sources of randomness in the two different processes. While 
excess entropy mostly contributes to statistical complexity in the real data, entropy rate is 
mostly responsible for statistical complexity in the simulated data. Interestingly, the 
entropy rate of the simulated data is on the same order of magnitude as the excess entropy 
in the real data. This may be suggesting that the observed measures of entropy and KL 
divergence that I attempted to optimize while adjusting parameters of the coupled 
oscillator model may have actually been a result of excess entropy in the real system.  

VI: Conclusion 

The conclusion of these simulations is that in order to model the phase difference 
from the Phase –BMI task described, Gaussian noise with coupling is not sufficient. 
Other mechanisms must be underlying the process in order to account for the high 
entropy yet highly structured, smooth signal. One possibility is that the animal is exerting 
discrete pulses to move the cursor with his neural activity. These ‘pulses’ exude a 
stereotyped impulse response from the system, which allows him to control the cursor. 
The idea of impulse responses in neurons has been explored through literature describing 
“phase resetting” of oscillators due to external stimuli. Neurons that fire periodically will 

Simulated	
  Data;	
  

Real	
  Data;	
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reset their phase in a well-defined manner in response to external stimuli. To describe the 
neuron’s resetting behavior, phase resetting curves can be calculated that illustrate how 
the neuron changes its next firing depending on when in the cycle the external stimuli 
fires. For example, below is a phase resetting curve for a cortical neuron.  

 

(Ermentrout, 2004) 

 

This paradigm could be applied to phase-BMI models as well. Potentially, as the subject 
attempts to reach to the right or left, he could perturb the synchronized phase of the two 
oscillators and the phase would respond in a smooth, stereotyped way. This type of 
response may be a more accurate way to maintain the high entropy that phase-BMI data 
exhibits, but also maintain a low entropy rate in the way that Gaussian noise was unable 
to.  
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Phase Resetting Curve: The change in the 
firing pattern (y axis) of the neuron that is 
firing with a period of T is related to when in 
the neuron’s period (between 0sec and T sec) 
the external stimuli. For this neuron, stimuli 
that occur later in the cycle cause the neuron 
to “wait” to fire after it normally would. 
Stimuli occurring early in the period have 
little effect.   


