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Abstract

To understand the non-linear behavior that algoritms that make time discrete add to simulations
(in addition to the potentially non-linear behavior of what is being simulated) I compared Stromer-
Verlet algorithm with Runge-Kutta Order 4 for both a harmonic oscillator and a harmonic oscillator
bouncing against a hard wall. I wanted to do this so that I can get a better understanding of the
types of issues that people doing molecular dynamics run into, since many available codes (Amber,
CHARMM, Gromacs) use some version of the Stromer-Verlet Algorithm (usually the Leap-Frog
algorithm). Although, I would like to study the cases where damping and noise are accounted
for, there was some non-linear behavior seen in Runge-Kutta 4 near the point where it becomes
unstable. I isolated some the parameters and some return maps that seem to indicate an attractor
of some kind that would be interesting to characterize.
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2 BACKGROUND

1 Introduction

1.1 Motivation

The Stromer-Verlet algorithm is used my many molecular dynamics simulation packages. This
includes popular molecular simulation packages like Gromacs, Amber, and CHARMM. Although there
are different implementations: velocity explicit formulation, leap-frog formulation, and position-Verlet
formulations, these formulations can be proven to give the same results. They need slightly different
initialization procedures with velocity explicit having the simplest initialization.

In addition, Stromer-Verlet has some nice properties given its simplicity that higher order systems,
like Runge-Kuttta-4, do not have. Because of this, I wanted to make a comparison between two
algorithms, Stromer-Verlet, and Ruge-Kutta-4 regarding the non-linear dynamics that they introduce
(in additions to the dynamics that they are simulating). So my project is to explore what these
additional dynamics are.

1.2 Why is it interesting?

Computational chemists make use of Molecular Dynamics to answer many questions about chemical
systems that range from complicated periodic materials to a biological complex of molecules. I am,
myself, working on a biological system known as NADH:Dehydrogenase, that acts as a chemical proton
pump that is powered by electron transport from a higher reduction potential to lower reduction
potential. I wonder what we are sacrificing by using the Stromer-Verlet algorithm, and what we are
gaining as over an explicit Runge-Kutta method.

1.3 Project Summary

Initially, I was interested in finding out about the artifacts that simulation algorithms can inject
into the simulation. Unfortunately, many of the artifacts that I had tried to track down were created
by subtle bugs in my code, having to do with how I initialized the algorithm, or the order in which I
updated the variables.

In this report, I give some details about one artifact I still believe to real and would like to investigate
further. At particular parameters I am able to see a structured loss of energy in the phase space plot
of the Runge-Kutta 4 method, while the Stromer-Verlet remained stable. Following up on this case,
I was able to isolate a set of points that show up in return maps of multiple periods. I believe going
through the whole ’learning channel’, studying this one case (which I did not find till late), would be
instructive.

2 Background

2.1 Molecular Dynamics

Molecular Dynamics software packages are used in computational biochemistry to answer basic
questions about conformations and placements about particular molecules in relation to each other
and to get order of magnitude estimates on the forces, energies, and free energies involved.

In order to do a simulation of this sort, molecular dynamics software packages simulate a discrete
time version of Newton’s Laws working in response to a variety of bonded and non-bonded forces.
Although, there are packages (sometimes called ab intio molecular dynamics, or QM-MM) that take
into account quantum mechanics, even these packages use quantum mechanics only to create a static
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potential created by electrons for the nuclei to move in for each time step (making use of the Born-
Oppenheimer approximation). Because of this, I will only go into detail regarding the Newtonian
parts of the simulation.

2.2 Gromacs as an example molecular dynamics package

One popular, and one of the fastest molecular dynamics simulation packages, is called Gromacs–
which stands for GROningen MAchine for Chemical Simulations.

The basic algorithm that Gromacs follows is outlined below:

(i) compute accelerations in accordance with forces disregarding constraints, a(t)
i = F

(t)
i
mi

(ii) Update and scale velocities: v′(t) = λ(v(t−∆t) + a ∗∆t) where λ =
[
1 + ∆t

τt

(
T0

T t− 1
2 ∆t
− 1

)] 1
2

(iii) Compute new unconstrained positions: r′(t) = r(t−∆t) + v′(t)∆t
(iv) Apply constraint solver: r′(t) → r′′(t)

(v) Adjust velocity based on constraints: v(t) = r′′(t)−rt−∆t

∆t

(vi) Scale coordinates and size of simulation box: r(t) = µr′′(t), b = µb, µ =
[
1 + ∆t

τp
β
(
P (t) − P0

)] 1
3

The scaling in step (ii) is for the purpose of applying a thermostat, to try to maintain constant
temperature. I will be using a different method because it is not clear that this method creates the
proper use of time steps to keep the nice properties of Stromer-Verlet that I will talk about later.
Also, for a single particle, applying a background ”noise” to simulate a ”heat bath” and a damping
factor to simulate and implicit solvent is more appropriate.

The scaling in step (vi) is to apply a barostat to maintain a desired pressure. I will not be making
any adjustments to pressure, since this becomes quite confusing for a single particle case, and again,
I am not sure how to maintain the nice properties of Stromer-Verlet when applying a barostat.

Constrains are another complication in Gromacs that I will be avoiding. The purpose of constraints
in a molecular dynmics simulation is to create infinitely stiff bonds without having forces that have
very steep curves. The time step required for a simulation is usually limited by how steep the potential
being simulated are. Also, very stiff bonds, like Carbon-Hydrogen bonds are usually not activated by
the temperatures typical in biology, and since our simulations don’t account for quantum mechanics,
we would want to treat bonds like this as constraints rather than extremely stiff springs.

The forces that are usually involved in molecular dynamics are: (1) Harmonic forces use to simulate
bonds, angles between two bonds, and dihedral angles. (2) long range electrostatic forces modeled
by Coulomb forces. (3) r−12 potentials to model strong repulsive interactions without discontinuities,
and (4) r−6 potentials to model dipole-dipole interactions.

2.3 Stability of Stromer-Verlet and Runge-Kutta

One nice think about Stromer-Verlet is that the stability of Stromer-Verlet Algorithm (above)
depends only on the relation of time step to maximum frequency, while the stability of Runge-Kutta
(below) has many factors. See Figure 1.
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Figure 1: Stability of Stromer-Verlet Algorithm (above[2]) depends only on the relation of time step
to maximum frequency, while the stability of Runge-Kutta (below[3]) has many factors.
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3 DYNAMICAL SYSTEM

Beyond this, Stromer-Verlet is symplectic. In the following simulation that I ran where a particle
is bouncing off of two hard walls (a situation that will artificially change the energy involved), the
symplectic naure of Strome-Verlet shows a distortion in phase space, but a closed loop. See Figure
2. The Rune-Kutta integration for the same parameters was not stable despite being a higher order
integrator.

I wanted to see how a higher order algorithm, known not to be symplectic, like Runge-Kutta would
do in various situations in comparison to Stromer-Verlet. I wanted to characterize also how these
integrators fared as I changed the time-step.

Figure 2: Distortion of phase space by Stromer-Verlet Still keeps a closed loop. However, Runge-Kutta
diverges despite having higher order.

3 Dynamical System

3.1 Underlying Langevin Dynamics

The basic system will evolve according to the following equation:

mẍ = f(x, t)− αẋ+ 1
τ
β(t) (1)

Here, α is a damping factor used to represent an implicit viscous fluid through which objects move,
and the β(t) is meant to represent random perturbations that come from an implicit heat bath. To get
the appropriate representation for a heat bath, we need 〈β(t)〉 = 0, and 〈β(t)β(t′)〉 = 2αkbTτδ(t− t′).
τ would be the characteristic time of action by the heat bath. I’ll assume it to be small enough that
I can use my simulation time step as τ as crude approximation no matter how small my time step.
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3.2 Model Systems

The basic systems I want to look at are a harmonic oscillator and a harmonic oscillator bouncing
against a hard-wall. To this end, I place the harmonic oscillator inside a box in such a way that I can
move the equilibrium position or change the initial velocity so that the system can easily be adjusted
to be one of the two model systems I want to explore. The ”force field” for this underlying system is:

f = k(x− xeq) + 12ε
σ

[(
σ

x

)13
+
(

σ

Lbox − x

)13
]

(2)

The first term is the harmonic oscillator, with a k that can be set to zero to get rid of the spring,
while the second term represents the walls. I made the simulator use natural units where ε and σ are
used as units of energy and distance. So to get rid of the walls, I would need to comment that part
out of my code.

3.3 Algorithms

In some sense, what the algorithms themselves are (was included in my presentation) matter less
than what my actual implementation was.

One complication was that I wanted to make my implementations extensible to multiple particles,
and have tested basic functionality as an actual, albeit small, MD simulator with multiple particles in
a ”heat bath” and viscous fluids, with the possibility of including periodic boundary conditions. So
include here by listing of the the functions that do the Stromer-Verlet step and the Runge-Kutta step
(with some reformatting to fit on the page).

// do one step o f v e r l e t a lgor i thm
i n l i n e void v e r l e t s t e p ( part data ∗ d , coord dt , coord a , coord b ,

coord T, coord alpha ){
i n t i , part ;
f o r c e tempf [ P a r t i c l e s ] ; p o s i t i o n tempr [ P a r t i c l e s ] ; momentum beta [ P a r t i c l e s ] ;
f o r ( part =0; part<P a r t i c l e s ; ++part ){

beta [ part ]=random momentum(T, dt , alpha ) ;
// get new p o s i t i o n
f o r ( i =0; i<Dimensions ; ++i ){

tempr [ part ] . r [ i ]=
d−>data [ part ] . r . r [ i ]+

(d−>data [ part ] . v . r [ i ]+ beta [ part ] . r [ i ]+(d−>data [ part ] . h a l f f . r [ i ] ) ∗ dt )∗
dt∗b ;

//d−>data [ part ] . r . r [ i ]+=
// (d−>data [ part ] . v . r [ i ]+(d−>data [ part ] . h a l f f . r [ i ] ) ∗ dt )∗ dt ;

}
}
f o r ( part =0; part<P a r t i c l e s ; ++part ){

tempf [ part ]= h a l f f o r c e f i e l d ( part , d ,&( tempr [ part ] ) ) ; // get new h a l f f o r c e
// update v e l o c i t y
f o r ( i =0; i<Dimensions ; ++i ){

d−>data [ part ] . v . r [ i ]+=
(d−>data [ part ] . h a l f f . r [ i ]+tempf [ part ] . r [ i ] ) ∗ dt−

alpha ∗( tempr [ part ] . r [ i ]−d−>data [ part ] . r . r [ i ])+ beta [ part ] . r [ i ] ;
//d−>data [ part ] . v . r [ i ]+=(d−>data [ part ] . h a l f f . r [ i ]+tempf . r [ i ] ) ∗ dt ;

}
}
f o r ( part =0; part<P a r t i c l e s ; ++part ){

d−>data [ part ] . r=tempr [ part ] ; // update p o s i t i o n
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p b c c o r r e c t (&(d−>data [ part ] . r ) ) ;
d−>data [ part ] . h a l f f=tempf [ part ] ; // update f o r c e

}
}

That was the Stromer-Verlet implementation. Next is the Runge-Kutta, I know that there is
a simpler way to implement Runge-Kutta 4 (namely optimizing the velocity calculation), but in
preparation for including noise, I setup this more robust version. In doing so, I discovered a bug in the
initialization of my simpler version, and found that this new version can use much larger time steps.

// doing a time d e r i v i a t i v e o f so r t s , i gno r e the p o i t i o n s l o t
i n l i n e s t ep data rk4 update ( i n t part , par t data ∗ d , p o s i t i o n ∗ r , v e l o c i t y ∗ v , coord alpha , coord ha l f a lpha , coord dt , coord inv two dt , coord T){

s t ep data t o r e t ;
f o r c e i n t h f=h a l f f o r c e f i e l d ( part , d , r ) , r e tVal ;
momentum beta=random momentum(T, dt , alpha ) ;
s c a l m u l t v e c (v , ha l f a lpha , &retVal ) ;
d i f f v e c (& i n t h f ,& retVal ,& retVal ) ;
s c a l m u l t v e c (&beta , inv two dt ,& i n t h f ) ;
add vec(& i n t h f ,& retVal ,& retVal ) ;
t o r e t . v=(∗v ) ;
t o r e t . h a l f f=retVal ;
r e turn t o r e t ;

}

// do one step o f the RK4 algor i thm
i n l i n e void rk4 s t ep ( par t data ∗ d , coord h a l f d t , coord dt ,

coord two dt , coord alpha , coord ha l f a lpha , coord inv two dt , coord T){
i n t i , part ;
par t data k1 , k2 , k3 , k4 , k2 in , k3 in , k4 in ;
vec coord vec1 [ P a r t i c l e s ] , vec2 [ P a r t i c l e s ] ;
f o r ( part =0; part<P a r t i c l e s ; ++part ){

k1 . data [ part ]=
rk4 update ( part , d ,&(d−>data [ part ] . r ) ,

&(d−>data [ part ] . v ) , alpha , ha l f a lpha , dt , inv two dt ,T) ;
s c a l m u l t v e c (&(k1 . data [ part ] . v ) , h a l f d t ,& vec1 [ part ] ) ;
add vec (&(d−>data [ part ] . r ) ,& vec1 [ part ] ,&( k2 in . data [ part ] . r ) ) ;
p b c c o r r e c t (&( k2 in . data [ part ] . r ) ) ;
s c a l m u l t v e c (&(k1 . data [ part ] . h a l f f ) , dt ,& vec2 [ part ] ) ;
add vec (&(d−>data [ part ] . v) ,& vec2 [ part ] ,&( k2 in . data [ part ] . v ) ) ;
k2 . data [ part ]=

rk4 update ( part , d ,&( k2 in . data [ part ] . r ) ,
&( k2 in . data [ part ] . v ) , alpha , ha l f a lpha , dt , inv two dt ,T) ;

s c a l m u l t v e c (&(k2 . data [ part ] . v ) , h a l f d t ,& vec1 [ part ] ) ;
add vec (&(d−>data [ part ] . r ) ,& vec1 [ part ] ,&( k3 in . data [ part ] . r ) ) ;
p b c c o r r e c t (&( k3 in . data [ part ] . r ) ) ;
s c a l m u l t v e c (&(k2 . data [ part ] . h a l f f ) , dt ,& vec2 [ part ] ) ;
add vec (&(d−>data [ part ] . v) ,& vec2 [ part ] ,&( k3 in . data [ part ] . v ) ) ;
k3 . data [ part ]=

rk4 update ( part , d ,&( k3 in . data [ part ] . r ) ,
&( k3 in . data [ part ] . v ) , alpha , ha l f a lpha , dt , inv two dt ,T) ;

s c a l m u l t v e c (&(k3 . data [ part ] . v ) , dt ,& vec1 [ part ] ) ;
add vec (&(d−>data [ part ] . r ) ,& vec1 [ part ] ,&( k4 in . data [ part ] . r ) ) ;
p b c c o r r e c t (&( k4 in . data [ part ] . r ) ) ;
s c a l m u l t v e c (&(k3 . data [ part ] . h a l f f ) , two dt ,& vec2 [ part ] ) ;

Phys 256B Project Report 7 Nithin Dhananjayan



5 RESULTS

add vec (&(d−>data [ part ] . v) ,& vec2 [ part ] ,&( k4 in . data [ part ] . v ) ) ;
k4 . data [ part ]=

rk4 update ( part , d ,&( k4 in . data [ part ] . r ) ,
&( k4 in . data [ part ] . v ) , alpha , ha l f a lpha , dt , inv two dt ,T) ;

}
f o r ( i =0; i<Dimensions ; ++i ){

f o r ( part =0; part<P a r t i c l e s ; ++part ){
d−>data [ part ] . h a l f f . r [ i ]=

( k1 . data [ part ] . h a l f f . r [ i ]+2.0∗ k2 . data [ part ] . h a l f f . r [ i ]+
2 .0∗ k3 . data [ part ] . h a l f f . r [ i ]+k4 . data [ part ] . h a l f f . r [ i ] ) / 6 . 0 ;

}
f o r ( part =0; part<P a r t i c l e s ; ++part ){

d−>data [ part ] . r . r [ i ]+=
dt ∗( k1 . data [ part ] . v . r [ i ]+2.0∗ k2 . data [ part ] . v . r [ i ]+

2 .0∗ k3 . data [ part ] . v . r [ i ]+k4 . data [ part ] . v . r [ i ] ) / 6 . 0 ;
p b c c o r r e c t (&(d−>data [ part ] . r ) ) ;

}
f o r ( part =0; part<P a r t i c l e s ; ++part ){

d−>data [ part ] . v . r [ i ]+=two dt∗d−>data [ part ] . h a l f f . r [ i ] ;
}

}
}

4 Methods

I implemented a Stromer-Verlet and Runge-Kutta simulator using c. Then created time evolution
plots, phase plots, return maps, and bifurcation diagrams to understand the non-linear behavior of
failure modes.

I would like to calculate Lyapanov Characteristic Exponents of something that looks like an attractor
to me. I would like to map out the generating partitions for the system that maximize entropy rate.
But the implementation of the simulators had more subtleties than I expected. I have incorporated
damping and noise into my simulator but the parameters are set to zero for now. I would like to
explore these cases further.

5 Results

5.1 Confirmation that simulator works

In order to test that the simulator works, I ran both methods for a small time-step with no damping
and no noise, and saw the expected behavior in both a low velocity and high velocity case (bouncing
off walls). See Figure 3. It turns out, however, that checking for agreement and functionality at small
times steps is not adequate to ensure bugs are eliminated. Nevertheless, it is a good sanity check.

5.2 Some Divergence of Between Algorithms seen even without Damping and
Noise

To explicitly see an interesting case, I moved the equilibrium position near the wall. Here, I could
see the Stromer-Verlet algorithm was still well behaved, while the Runge-Kutta had an interestingly
structured energy loss in the simulation at the same time step. See Figure 4.

I thought that using the angle (or more easily, the tangent of the angle) from point (20,0) on the
phase plot, could serve to be something close to a bifurcation diagram with the the parameter being
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Figure 3: For small time step both Stromer-Verlet and Runge-Kutta work as expected. On the left is
the time evolution of a high-velocity case where the oscillator bounces off of walls, and on the right
is a low velocity case where the the initial velocity is lower and the oscillator is allowed to go its full
distance. The time step used was dt = 6 ∗ 10−7

(
σ
√

Mp

ε

)
.

Figure 4: Runge-Kutta and Stromer Verlet diverge with dt = 5 ∗ 10−3
(
σ
√

M
ε

)
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the tangent in phase space. The result of this is shown in Figure 5. It is not clear that these points
in phase space represent fixed points or limit cycles or anything of that sort. But I thought, it would
present a good way to look at what might be interesting to explore further.

Figure 5: Runge-Kutta and Stromer Verlet with dt = 5 ∗ 10−3
(
σ
√

M
ε

)

Now, in the case given above,an angle of 0 may be an interesting point. If we look at only the
points where the velocity (or momentum) is effectively zero, we get a fairly ordered plot over time.
See Figure 6.

Figure 6: Runge-Kutta and Stromer Verlet with dt = 5 ∗ 10−3
(
σ
√

M
ε

)
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Another point to look at might be a phase angle tangent of 1. If we look at when we have the
desired phase within a tolerance in our simulations, we see the the Stromer-Verlet algorithm takes on
continuous range of values, but the Runge-Kutta only some. See Figure 7. Our oscillator has a small
period compared to the time scale plotted.

Figure 7: Runge-Kutta and Stromer Verlet with dt = 5 ∗ 10−3
(
σ
√

M
ε

)
. The targeted phase angle

tangent was 1

For this case, it may be interesting to look at the return map to see what it could tell us. See Figure
8. Here we see, that there are some components at this phase space angle that are not fixed points.
Further examination, looking at larger periods show them these regions to expand when we look at
higher period return maps. See Figure 9.

I find it interesting that the very same points in the return map show up at multiple period lengths.
To me, this seems to indicate that these points in phase space are an attractor of some sort, and I
want to investigate this attractor further.

6 Conclusions

Even though, in principle, molecular dynamics is just an implementation of a differential equation
solver, there are many issues that need to be addressed to get stable results in reasonable time frames.
I attempted to look at the artifacts that can occur if we use an integrator that doesn’t properly
account for conjugate variables. However, many of the things I thought we issues with Runge-Kutta
or Stromer-Verlet turned out to be bugs in my own code.

Once (I believe) I sorted these issues out. I was able to isolate non-linear behavior in the phase
map at particular control parameters. Using return maps, I believe, I’ve isolated some attractors in
the flow. I believe this to be the case because the same points show up on return maps at multiple
periods without being limit cycles of the given length. I would like to explore this further by making
small perturbations at these phase space points to see how the disturbances grow.
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Figure 8: Return map for Runge-Kutta and Stromer Verlet with dt = 5∗10−3
(
σ
√

M
ε

)
. The targeted

phase angle tangent was 1

Figure 9: Multiple length period return maps for Runge-Kutta with dt = 5 ∗ 10−3
(
σ
√

M
ε

)
. The

targeted phase angle tangent was 1
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