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Motivation

● Can mathematical approximation processes 
be viewed as dynamic systems?

– These systems seem to have interesting 
nonlinear structure (Gibbs & Runge 
phenomena)

● If so, can computational mechanics be used to 
develop an increased understanding of the 
information processing properties of these 
methods?



  

Specific Motivation

● Climate change modelling
● Visualization of oceanographic data
● Approximation of scalar fields using various 

scattered data interpolation methods
● Limitations of having extremely sparse 

datasets
● Flow-field-aware directional interpolation



  



  



  



  



  



  



  



  



  



  

Directional Interpolation



  

Directional Interpolation



  

Directional Interpolation



  

Directional Interpolation



  

Directional Interpolation



  

Scalar Field Approximation in a Flow 
Field

● Can we do something analogous to flow-field-
aware directional interpolation, but without a 
priori knowledge of the flow field?

● Might want to sample scalar fields at nearby 
points in order to get flow field approximations

● In general, a spatial statistics problem
● Can we determine where additional data 

points are needed?



  

Simple Test Problems

● Approximation methods in 1D and 2D
– Spline interpolation

– Regression

– Scattered data interpolation



  

Using Computational Mechanics

● How to formulate a mathematical 
approximation problem as a dynamical 
system?

● First approach : sequential sampling of a given 
(unknown) function

● As with computational mechanics, a primary 
goal of our approximation problem is 
prediction



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  

Applying Computational Mechanics

● Because of the quick decay of the RMS error, 
the system becomes uninteresting

● Also, not enough statistics to do (epsilon 
machine) inference

● Need a new dynamic system definition
– Perturbation of sample points 



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  

Discretization of RMS to Define 
Process Alphabets

● 11 symbol alphabet

● Binary alphabet:   Threshold of RMS = 0.01



  

Preliminary Results

● Could not get epsilon machine inference to 
work for the 11 symbol alphabet

● For the discretized RMS bit string output, 
epsilon machines can be obtained



  

Epsilon Machine for degree=1



  

Epsilon Machine for degree=2



  

Epsilon Machine for degree=3



  

Epsilon Machine for degree=4



  

Epsilon Machine for degree=5



  

Entropy Rate, Statistical Complexity, 
and Excess Entropy



  

In progress / To do

● Try to get results with a non-binary alphabet
● Try different discretization thresholds
● Try different functions
● Make sense of the results?
● Investigate spatial correlations?
● Try other approximation methods
● Try higher dimensions
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