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Abstract:  

In this paper we look at the effects varying the transition probabilities between the states of 

probabilistic epsilon machines has on the statistical and information-theoretic properties, as 

well as the topology, of the epsilon machines.  Specifically, we measure the changes in entropy 

rate, statistical complexity, and excess entropy over the transition probability parameter space 

of the Even Process, Golden Mean Process, Noisy Random Phase Slip Process, and Telescope 

Process. We discuss the significance of these measurements to the robustness of epsilon 

machines as models.  We then introduce the notions of “killing” and “collapsing”, two topology-

altering phenomena that occur as we vary the transition probabilities, and discuss their 

implications to the study of the space of all probabilistic epsilon machines.   
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Introduction 

Motivation 

The motivation behind this research was two-fold. I was curious to see how varying the 
transition probabilities between states of probabilistic epsilon machines affected statistical 
measurements of the process being represented; and, more abstractly, I wanted to see if 
varying transition probabilities would provide hints of structure to the space of all epsilon 
machines.   

Synopsis 

We began by parameterizing the transition probabilities between states for the Even Process, 
Golden Mean Process, Noisy Random Phase Slip Process, and Telescope Process.  We then 
wrote code in the CMPy server to plot the entropy rate, statistical complexity, and excess 
entropy over the transition probability distribution parameter space.  Upon generating the 
plots, we analyzed the results.   

Not only does the data support reason for interest in such plots as a means of measuring model 
robustness, it illuminates a potential avenue to pursue in future research on the structure of 
the space of probabilistic epsilon machines.   

Striking features found in some plots of entropy rate, statistical complexity, and excess entropy 
over the transition probability distribution parameter space of these epsilon machines also 
highlight that topological changes in the epsilon machine representation can occur - via the 
processes of “killing” and “collapsing” – as a result of varying the transition probability 
distribution.  Where these topological changes occur, what leads to them and how they can be 
used to study the structure of the space of all epsilon machines are all addressed in this paper.    

Background  

Model Robustness 

Probabilistic epsilon machines were introduced as models of stationary stochastic processes 
whose states represent equivalence classes of histories that have the same probability 
distribution over future events.  Multiple algorithms have been provided for constructing an 
epsilon machine representation for a given stochastic process from the data gleaned while 
measuring the process; in all methods of construction, the transition probabilities between 
states are derived directly from this data.  Thus, variability in the data could lead to variability in 
the transition probabilities between the states of the epsilon machine.   

The entropy rate, hµ, of a process is defined below and is interpreted as the intrinsic 
randomness of a process. 

Eq.1: 
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The statistical complexity, Cµ, of a process is defined below and is interpreted                                                   
as the stored information in a process, or the amount of structure in the process.  

Eq.2: 

 

The excess entropy, E, of a process is [ask Ryan how CMPy calculates E] and is interpreted as 
the amount of information transmitted from the past to the future.   

As the entropy rate, statistical complexity, and excess entropy are statistical and information-
theoretic properties each defined as a function of the transition probabilities between states, 
one expects their values to change as the transition probability distribution is varied.   

Knowledge of how statistical and information-theoretic properties such as entropy rate, 
statistical complexity, and excess entropy are affected by changing the transition probabilities 
of a probabilistic epsilon machine allows one using an epsilon machine representation of a 
process to provide a bound for these values based on their confidence in their data.  

This interpretation of model robustness concerning the sensitivity of statistical measurements 
to variation of transition probabilities is just one, though one that has the potential to be 
rigorously defined.  The notion of robustness in relation to epsilon machine representations 
should be explored further in future work, particularly in conjunction with the fresh perspective 
on possible structure to the space of all probabilistic epsilon machines provided by the concepts 
of “killing” and “collapsing”. 

Understanding the Space of Epsilon Machines 

When wishing to consider possible structure to the space of all probabilistic epsilon machines, it 
is helpful to be familiar with the development of epsilon machines in conjunction with the 
evolution of complexities studies.  Over the course of the evolution of complexity studies, ideas 
like “complexity”, “pattern”, “order”, “structure”, “randomness”, “information”, and “memory” 
were formalized in an attempt to describe phenomena, their properties and their relationships 
in a way that allowed for a rigorous study of these subjects.  Yet as more research in the field 
leads to a greater understanding of the nuances of these concepts, the definitions in place and 
the meaning(s) behind them continue to be revisited and reshaped.  Thus, when it comes to a 
rigorous study of such subjects, it becomes imperative to be thoughtful in one’s understanding 
of the motivation behind definitions and in what respects these definitions can be applied 
meaningfully.  Epsilon machines themselves are no exception.   

In “Equivalence of History and Generator Epsilon Machines”, Travers and Crutchfield explain 
that the initial purpose of an epsilon machines was as a representation of a particular stationary 
stochastic process.  Epsilon machines were formally defined as the minimal, unifilar 
presentations for stationary stochastic processes where the states of the epsilon machine were 
“equivalence classes of infinite past sequences that lead to the same predictions over future 
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sequences”.  This definition motivates questions involving epsilon machines as representations 
of specific processes, such as considering the robustness of statistical measurements taken 
from a given epsilon machine as discussed above.   

Epsilon machines were then later defined as “irreducible, edge-label hidden Markov models 
with unifilar transitions and probabilistically distinct states”.  This shift in perspective focuses on 
epsilon machines as a class of objects with specific properties and considers an arbitrary epsilon 
machine as the generator of a set of stationary stochastic processes.  This definition motivates 
questions pertaining to a class of objects, and the structure of such a set.   

Travers and Crutchfield go on to show that these two definitions are equivalent.    

Much work has been done to better understand the structure of the space of epsilon machines, 
and many distinct approaches have been adopted.  A successful approach was taken by 
Crutchfield, Johnson, Ellison, and McTague in “Enumerating Finitary Processes”, in which they 
construct an algorithm that enumerates all topological epsilon machines with n states and 
alphabet size k, where n and k are finite.  Topological epsilon machines are a subset of 
probabilistic epsilon machines that are defined as having uniformly distributed transition 
probabilities on the edges exiting each state.  This has significant consequences for the 
symmetries allowable in the structure of a topological epsilon machine, which are closely 
related to the processes of “killing” and “collapsing”.  

As a probabilistic epsilon machine is defined by both its topology and symbol-label scheme as 
well as its transition probability distribution, a similar enumeration scheme for probabilistic 
epsilon machines is not possible due to the fact that, in general, for a given topology and 
symbol-labeling, there are an uncountable number of transition probability distributions an 
epsilon machine can take on.   

What was discovered in this research is that probabilistic epsilon machines with certain 
topologies and symbol-labeling schemes cannot support certain transition probability 
distributions due to symmetries in the structure of the epsilon machine.   

At these locations in the transition probability distribution parameter space of the epsilon 
machine, two phenomena occur that change the topology of the epsilon machine 
representation – “killing” and “collapsing”.  “Killing” occurs when the transition probability on 
an edge of the epsilon machine goes to zero; the elimination of that edge from the epsilon 
machine representation can result in the removal of states from the epsilon machine 
representation as well as further “collapse”.  “Collapsing” occurs when states of an epsilon 
machine no longer have distinct probability distributions over the future.  In order for this 
representation of a stationary stochastic process to remain an epsilon machine representation 
of the process, these states must be associated thereby reducing the number of states in the 
epsilon machine representation.  This paper lays out preliminary work in understanding “killing” 
and “collapsing” and offers promising results that these concepts will be beneficial in 
understanding the structure of the space of probabilistic epsilon machines.    
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Varying Transition Probabilities of Probabilistic Epsilon Machines 

The transition probability distribution parameter space of a probabilistic epsilon machine with n 
states is an (e1 – 1)-simplex       (e2 – 1)-simplex        …         (ei– 1)-simplex        …        (en– 1)-
simplex, where ei  is the number of edges exiting state i.  Note that ei  is bounded from above by 
the alphabet size.  Each point in the transition probability distribution parameter space 
represents a probabilistic epsilon machine.   

Data 

Using code written in the CMPy server, we plotted the values of hµ, Cµ, and E over the 
transition probability distribution parameter space for epsilon machine representations of the 
Even Process, Golden Mean Process, Noisy Random Phase Slip Process, and Telescope Process. 

*Refer to the Appendix to see the epsilon machine representations of these processes. 

Below are the plots we generated: [insert key to colors –need to ask Ryan] 

Fig.1: 
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The alphabet size of the epsilon machine representations looked at in this research is 2, and the 
dimension of the transition probability distribution parameter space of these epsilon machines 
does not exceed 2.  However, what was found encourages extending this research to consider 
these concepts in relation to higher dimensional transition probability distribution parameter 
spaces, as well, as a means of testing model robustness and understanding possible structure to 
the space of probabilistic epsilon machines.   

Analysis 

These results support the use of similar plots as a tool in determining model robustness.  We 
can observe that in some regions of the parameter space, were our transition probabilities 
slightly off, we could get drastically different values for hµ, Cµ, and E.  Even in regions of the 
parameter space where the values of hµ, Cµ, and E do not vary drastically, it is beneficial to 
know how they do vary in order to provide a bound on these quantities.  

The diversity in how the entropy rate, statistical complexity, and excess entropy vary over the 
parameter space of transition probability distributions for these processes alone motivates 
using these measurements as a potential means of describing properties of probabilistic epsilon 
machines with isomorphic symbol-label schemes.   

For instance, symmetries of these statistical and information-theoretic measurements within 
the transition probability distribution parameter space could reflect symmetries characteristic 
to the class of probabilistic epsilon machines with isomorphic symbol-label schemes over which 
the transition probabilities are being varied.  This could be an interesting direction for future 

Telescope 

Process: 

NRPS 

Process: 
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research, as epsilon machines are defined as a subset of a larger set of objects satisfying 
specific structural restrictions; thus, the structure of the space of epsilon machines is inherently 
connected to the structure of epsilon machines themselves.  

Note also that the dimension of the transition probability distribution parameter space of a 
probabilistic epsilon machine of with n states is bound from above by the alphabet size, k, 
minus 1 times n.  Looking at the set of all potential symbol-labeling schemes of all probabilistic 
epsilon machines achieving this topological “completeness”, as well as at the notion, and 
ramifications of, of alphabet size translation, could provide another perspective on the 
structure of the space of probabilistic epsilon machines. 

 “Killing” and “Collapsing”: A Motivating Example 

To motivate the concepts of “killing” and “collapsing”, we consider the following example.   

The Set Up 

Starting with the below probabilistic epsilon machine, we parameterize the transition 
probability distribution on the edges emanating from each state:   

Fig.2: 

                                                                

 

 

Plotting the values for the entropy rate, statistical complexity, and excess entropy over the 
transition probability distribution parameter space of this machine yields the following:  

 

Probabilistic Epsilon Machine with 

Specific Transition Probabilities 

Probabilistic Epsilon Machine with 

Parameterized Transition Probabilities 
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 Fig.3: 

 

 

 

 

 

 

 

 

An analysis of these plots reveals that, unlike hµ, Cµ and E do not vary continuously near the 
diagonal where p = q.  Another noteworthy feature is that the top and right boundary, where   
q = 1 and p = 1, respectively, are uniform and identically zero for hµ, Cµ, and E.  These features 
reveal topological consequences that occur as a result of varying the transition probability 
distribution.   

What’s Happening Where p = q: “Collapsing” 

When p = q, the states B and D, as well as A  and C, have the same probability distributions over 

futures.  

Fig.4:           Because states B and D, as well as A and C, have the same probability 

distributions over futures, the machine representation we have is no 

longer an epsilon machine. Yet this “non-epsilon” machine does 

represent a stationary stochastic process, therefore there is an 

epsilon machine representation for it.  Our problem with this “non-

epsilon” machine representation is that it is not minimal. We fix this 

by letting states B = D and A = C.  Doing so “collapses” our machine 

into the familiar Even Process.  

It is this process of associating states that 

alters the topology of the epsilon machine 

representation within the parameter space of 

a given epsilon machine which we will call 

“collapse”.   

  

The Even Process 

hµ E Cµ 

Machine Representation 

when p = q 
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What’s Happening Where q = 1 and p = 1:  “Killing” 

When p = 1, the transition probability of the edge with symbol-label 0 from state A to state B 

goes to zero and we remove this edge from the epsilon machine representation.  As a result of 

this, states B, C, and D become transient and are likewise removed from the epsilon machine 

representation.  This leaves us with a single state epsilon machine that emits a single symbol, 

explaining why hµ = Cµ = E = 0 along the right boundary of the parameter space.  

Similarly, when q = 1 the transition probability of the edge with symbol-label 0 from state C to 

state D goes to zero and we remove that edge from the epsilon machine representation. Now, 

states D, A, and B become transient and are removed from the epsilon machine representation.  

This leaves us with a single state epsilon machine that emits a single symbol, explaining why hµ 

= Cµ = E = 0 along the top boundary of the parameter space.  

Fig.5:      

                                                                    

 

 

The process of removing an edge from the epsilon machine when the transition probability of it 

goes to 0 will be called “killing”; “killing” can result in the removal of states from the epsilon 

machine, as well as further “collapse”. 

 

 

Machine Representation 

when p = 1 

Machine Representation 

when q = 1 

Machine Representation 

when p = 1 
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Results 

Using these concepts, we prove the following theorem and state the following conjecture.  The 

potential implications of these to the study of the structure of the space of probabilistic epsilon 

machines are the objective of current research, and promising ideas will be introduced below.    

Theorem 

Theorem: Topological epsilon machines do not “collapse” in a region of the transition 

probability distribution parameter space that is not also a “killing” region. 

Proof: 

In order for states to “collapse”, states “collapsing” must have the same probability distribution 

over the future. [and the same entering symbol-labeling with the same transition probabilities? 

Not needed for proof, but nonetheless important to think through if it is necessary for collapse 

in general]   

Suppose we have a topological epsilon machine.  Now suppose that this topological epsilon 

machine has a symbol-labeling scheme that supports a transition probability distribution that 

allows for some states to have the same probability distribution over the future [and same 

entering symbol-labeling with the same transition probabilities]. We wish to show this is 

impossible. We will do this by means of reaching a contradiction.  Suppose the epsilon machine 

has a symbol-labeling scheme that allows for some states to also have the same probability 

distribution over the future.  Then there must be the same number of edges exiting these 

states, and they must have the same symbol-labeling.  By definition, the transition probabilities 

of topological epsilon machines are uniformly distributed.  Since the number of edges exiting 

these states is the same, the exiting probabilities must also match up.  This means that these 

potentially “collapsible” states have equivalent probability distributions for the future; thus, our 

machine is not minimal.  We must conclude that this machine is not an epsilon machine.  But, 

we supposed from the beginning that our machine was a topological epsilon machine.  Having 

reached a contradiction, we can therefore say that we cannot have a topological epsilon 

machine that is “collapsible” without first “killing” off an edge.  

Conjecture 

Conjecture:  (The Converse) An epsilon machine with a symbol-labeling scheme that “collapses” 

only in a region of the transition probability distribution parameter space being transition 

parameter space that is also a “killing” region is isomorphic to a topological epsilon machine.   
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One way to approach this conjecture would be to consider the restrictions imposed on an 

epsilon machine by the condition of the “collapsing” region being contained within “killing” 

region of the transition probability distribution parameter space.  The next step would be to 

demonstrate the equivalence between this set of restrictions and the enumeration scheme of 

topological epsilon machines found in “Enumerating Finitary Processes” as a pruning of a larger 

class of objects.       

Implications 

A potential implication of the above theorem and conjecture relates back to the work done by 

Crutchfield, Johnson, Ellison, and McTague in “Enumerating Finitary Processes” in which they 

enumerate all topological epsilon machines with n states and alphabet size k.  Starting with an 

arbitrary probabilistic epsilon machine, we can look at the transition probability distribution 

parameter space and identify the region where “collapsing” occurs.  Properties of this space as 

a submanifold of the transition probability distribution parameter space can alone be explored 

as a means of identifying structure to the space of all epsilon machines.   Yet were the 

conjecture above proven true, the epsilon machine representations in the transition probability 

distribution parameter space where “collapsing” occurs are all topological epsilon machines, 

and thus can be identified according to the enumeration scheme presented in “Enumerating 

Finitary Processes”.  Looking at the topological epsilon machines “nested” inside of a 

probabilistic epsilon machine and the structure of this “nesting” could possibly be used to 

classify probabilistic epsilon machines.     

The perspective on the structure of the space of probabilistic epsilon machines provided by the 

concepts of “killing” and “collapsing” can also suggest other possible tests for model 

robustness.  For instance, looking at the distance within the transition probability distribution 

parameter space between a probabilistic epsilon machine and the topological epsilon machines 

from which the probabilistic epsilon machine could have, after first “killing”, “collapsed” as well 

as the topological epsilon machines into which the probabilistic epsilon machine may “collapse” 

could provide some measure of model robustness. 

Conclusion 

Though simple, the concepts of “killing” and “collapsing” seem to offer a powerful perspective 

when it comes to considering the structure of the space of probabilistic epsilon machines.  The 

ability to better understand, and possibly make rigorous, the relationship between topological 

epsilon machines and probabilistic epsilon machines in relation to the structure of the space of 

all probabilistic epsilon machines via the concepts of “killing” and “collapsing” is just one 

application that demonstrates the wealth of knowledge to be gleaned by using these notions in 

tandem with previous research in the field.     
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Appendix 

Epsilon machines for the processes discussed in the paper are reproduced below: 

Fig.6: 

    

 

    

 

Even Process Golden Mean Process 

Noisy Random Phase Slip Process Telescope Process 
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