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Searching for patterns in Virtual California

Earthquakes are devastating and fascinating events. Understanding patterns in
earthquakes would be useful not just in understanding the underlying mechanisms
involved in producing these events, but also in forecasting and preparing for them.
However, dynamics operating at many different scales and the difficulty of collect-
ing data make earthquakes difficult to study. Because of this, simulations play an
important role. I discuss Virtual California, a specific earthquake simulator that I
have been involved in developing. I then apply tools from information theory to the
output from this simulator and discuss the results.
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Introduction

Earthquakes are among the most devastating natural events faced by society. In
2011 the damage resulting from earthquakes accounted for 59% of world wide
economic losses due to natural disasters [1]. The magnitude 9.0 Tohoku earth-
quake off the coast of Japan on March 11, 2011 caused approximately $210 bil-
lion in damages and killed approximately 16,000 people [2]. Over the past decade
events in the Indian Ocean on December 26, 2004 and Haiti on January 12, 2010
caused enormous devastation, totaling roughly 543,898 deaths [3] and $21.8 bil-
lion [4, 5] in economic losses. Overall the deaths caused by earthquakes over the
last decade is estimated at 791,721 [6]. A repeat of the magnitude 7.9 1906 San
Francisco earthquake could cause as much as $84 billion in damages [7] which
would give this event the dubious distinction of being the third most costly natural
disaster ever recorded, beating out Hurricane Katrina.

Aside from the destruction caused by earthquakes, they are also interesting phe-
nomena in their own right. The largest earthquake ever recorded, the 1960, mag-
nitude 9.5 Chilean earthquake released 2.24 × 1023 joules of energy or 5.35 ×
107 megatons of TNT. This is ∼ 10,000 times the destructive power of the world
nuclear arsenal and ∼ 56% the energy released in the Chicxulub impact which is
thought to be responsible for the Cretaceous-Paleogene extinction [8]. The Tohoku
earthquake released enough energy to slow down the earth’s rotation, shortening
the length of the day by 1.8 microseconds [9].

Clearly, studying earthquakes is both useful – better understanding can lead to
better disaster preparedness and prevention, and interesting – they are among the
most energetic events in nature that we can study up close. However, the fact that
they mostly occur underground, and are the result of forces that can take many of
thousands of years to accumulate and operate at scales ranging from microscopic
to global, makes studying them difficult. Up until recently the best data that had
been collected was a list of recorded events – the seismic catalog – that consists
of times, locations and magnitudes. This was supplemented by a much smaller
catalog of historical events that were not directly recorded but were inferred by
geologic evidence (the paleoseismic catalog). Starting a few decades ago this
catalog data began to be supplemented by ground deformation data collected by
GPS arrays and radar interferograms. However, the quality and coverage of this
newer data is inconsistant and it may be several more decades before the gaps in
it are filled.

The difficulty of collecting earthquake data directly make the use of computer sim-
ulations in studying them important. Simulations can be developed that match
existing observations, but are capable of producing data over a much wider range
of scales, potentially filling gaps in the observational data. Once this data is pro-
duced the question becomes how do we use the simulated data to study the
actual fault systems. One answer to this question is to use the tools developed in
information theory to understand the patterns within the simulations that are the
result of the complex underlying dynamics of the systems.

The purpose of this project is to begin applying information theoretic tools to earth-
quake simulation data. I will describe one particular earthquake simulator that I
have been involved in developing: Virtual California [10, 11, 12]. Using output
from Virtual California I have developed an initial set of tools, based on information
theoretic quantities, to analyze earthquake simulation data. I will discuss the initial
results from these tools and outline future directions for this work.
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Ensemble-Domain Verses Time-Domain Simulations

Earthquake fault simulations generally fall into one of two categories: ensemble-
domain and time-domain. Before I describe Virtual California in detail it is important
to draw a distinction between these two types of simulations. A time-domain fault
simulation attempts to solve a set of differential equations that govern the evolu-
tion of the system. These simulations usually employ an approximation scheme
like finite-element analysis. The result of these solutions is a function which has
time as an independent variable, so in principle the state of the system at any given
time is encoded in the solution. Aside from the considerable computational diffi-
culty of applying the time-domain approach to fault systems, problems arise from
the sensitivity of these solutions to initial conditions. As mentioned above, collect-
ing information about the current state of a fault is difficult which makes precise
definitions of initial conditions difficult.

An ensemble-domain simulation sidesteps the problem of initial conditions by look-
ing for the most likely states of the system given some set of external parameters.
Instead of generating a single “history” of the system, many histories are created –
a so-called ensemble. This ensemble is then the basis of a statistical analysis. Be-
cause the ensemble is a combination of many different paths the system can take,
it is less sensitive to where those paths begin. A familiar example of this approach
is the Metropolis Monte Carlo algorithm [13]. Virtual California as well as several
other simulators [14, 15, 16] are examples of an ensemble-domain simulation.

Virtual California

There are three major components that make up Virtual California: a fault model, a
set of quasi-static interactions or “Green’s functions” and an event model. In spite
of the name, the only component of Virtual California that is California-specific
is the fault model. This model can be changed to any physically realistic model
and still correctly work with the simulation physics and event model. All of these
components are designed around the concept of a “back-slip” model. Back-slip
models have the advantage of a static fault geometry. In actual earthquakes, plate
motions far away from faults cause stress buildups at the faults. When the faults
break, the cracking of the earth causes discontinuous displacements across faults
(Figure 1 top). These displacements cause the fault system to evolve over time.
This evolution is very difficult to simulate due to the many complexities involved
in crack propagation in the heterogenous earth. A back-slip model on the other
hand, applies displacements at the faults in the opposite direction of the distant
plate motions (Figure 1 bottom), much like pulling apart leaf springs. When stress
builds up to some threshold, the displacements snap back to their equilibrium po-
sitions. In this way the accumulation and release of stress can be modeled without
changing the actual geometry of the fault system. The fault model is designed to
implement this approach by modeling the minimal amount of geometry needed
to describe the faults, and then treating the faults as collections of disconnected
elements that interact only through the Green’s functions. The Greens functions
encode all of the physics of stress and strain in the earth. Both of these compo-
nents are described in detail below.
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equilibrium stress applied after rupture

Figure 1: Actual fault ruptures compared to back-slip ruptures. Each scenario is
shown (from left to right) before stresses are applied, as stresses are applied, and
after the rupture. The horizontal lines show the deformation of the earth around the
fault which is illustrated by the grey vertical line. Top an actual rupture. Bottom a
back-slip rupture.

Fault Model

As mentioned above, the fault model is the only component of Virtual California that
is specific to California. In general, a fault model for Virtual California is a model
of the faces of the faults only, not the surrounding earth in which the faults are
embedded. This is an important simplification that allows for large fault systems
to be simulated. The face of the fault is meshed with square elements. Due to the
fact that Virtual California is a back-slip model, it is not important that this meshing
be continuous or that the elements not intersect. Elements will only interact with
each other through the Green’s functions described below. An example of a Virtual
California fault model is shown in Figure 2. Each element is assigned a back-slip
velocity and a breaking stress – values that are taken from observations for models
of actual fault systems. The back-slip velocity is a vector that always lies in the
plane of the element, but can point in any direction in the plane. In this way, thrust
faults and strike slip faults can be modeled.

Green's Functions

Interactions between fault elements are governed by quasi-static Green’s func-
tions. The effect that one element has on another depends on their relative po-
sitions and orientation and on the direction of their slip displacements. Because
the fault geometry is static, these interactions only need to be calculated once. In
order to calculate the stress Green’s functions, every element is back-slipped a
unit distance along its slip velocity vector and the changes of stress are calculated
for every other element. The stress changes at any location, 𝑥, in the simulation
due to changes on all other elements is given by [11, 10]:
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Figure 2: Detail of a Virtual California fault model.

𝜎𝑖𝑗(𝑥, 𝑡) = ∫ 𝑑𝑥′
𝑘𝑇𝑘𝑙

𝑖𝑗 (𝑥 − 𝑥′)𝑠𝑙(𝑥′, 𝑡), (1)

where 𝑠𝑙(𝑥′, 𝑡) is the slip in direction 𝑙 and 𝑇𝑘𝑙
𝑖𝑗 (𝑥 − 𝑥′) is the Green’s function tensor.

The Einstein summation convention is assumed. The indicies 𝑖, 𝑗, 𝑘 and 𝑙 run over
the cartesian coordinate axes, 𝑥, 𝑦, and 𝑧. In the case of Virtual California, the field
is only evaluated at the centers of elements and slip is uniform across the surface
of an element and is allowed only along the element’s rake angle, which is defined
by the model. Under these conditions Equation 1 simplifies to:

𝜎𝐴
𝑖𝑗(𝑡) = 𝑇𝐴𝐵

𝑖𝑗 𝑠𝐵(𝑡), (2)

where 𝐴 and 𝐵 run over all elements. Lastly, because we are only interested in
the shear stress along the rake vector and the normal stress perpendicular to the
plane of the element, the 6 elements of the tensor 𝑇𝑖𝑗 reduce to 𝑇𝑠 for the shear
stresses, and 𝑇𝑛 for the normal stresses. The final stresses are determined by:

𝜎𝐴
𝑠 (𝑡) = 𝑇𝐴𝐵

𝑠 𝑠𝐵(𝑡)
𝜎𝐴

𝑛 (𝑡) = 𝑇𝐴𝐵
𝑛 𝑠𝐵(𝑡) . (3)

So, if there are 𝑁 elements in a model, Virtual California needs two 𝑁×𝑁 matrices
to govern all interactions.
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(a) Front view (b) Top view

Figure 3: The shear stress field, 𝜎𝑥𝑦, created by horizontal back-slip as viewed
from the front and top of an element. The direction of the back-slip is indicated by
the arrows. Tan color indicates 𝜎𝑥𝑦 > 0 and blue 𝜎𝑥𝑦 < 0.

The actual values of the Green’s functions are calculated using an implementation
of Okada’s half-space deformations [17]. Example’s of the output generated by
this implementation of Okada’s interactions are shown in Figure 3.

Event Model

Virtual California uses a static-dynamic friction law to determine when an element
fails. This law is implemented by a Coulomb failure function (CFF):

𝐶𝐹𝐹𝐴(𝑡) = 𝜎𝐴
𝑠 (𝑡) − 𝜇𝐴

𝑠 𝜎𝐴
𝑛 (𝑡), (4)

where 𝜇𝐴
𝑠 is the static coefficient of friction calculated from the model element

strengths. When 𝐶𝐹𝐹𝐴(𝑡𝑓) = 0 the element 𝐴 fails. To simplify the notation we will
remove the element label 𝐴 from the CFF function and just assume that it refers
to a single element.

Elements in Virtual California gain and release stress through an event model that
consists of two phases. A long term slip phase and a rupture propagation phase.
The long-term slip phase models the time between earthquakes when stress builds
up on the faults due to long-term plate movement. This involves applying back-slip
to all elements at their model defined slip velocities. The long term slip phase ends
at time 𝑡 = 𝑡𝑓, when one or more element’s CFF becomes 0: 𝐶𝐹𝐹(𝑡𝑓) = 0. Because
the interactions in the previous section are elastic, the relationship between slip and
stress is known (Equation 3), and it is not necessary to evolve the system step-by-
step during this phase. Rather, the simulation time is directly advanced to the point
at which the next element fails and then the rupture propagation phase begins.

During the rupture propagation phase the system releases accumulated stress
through a cascading series of fault element failures. The first element to fail is
allowed to slip back toward its equilibrium position. The amount the element slips,
Δ𝑠, is related to stress-drop defined for the element in the model, Δ𝜎, by [11, 10]:
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Δ𝑠 = {
1

𝐾𝐿

𝑁𝑒𝑓
𝑆𝑡

(Δ𝜎 − 𝐶𝐹𝐹), if 𝑁𝑒𝑓 ≤ 𝑆𝑡
1

𝐾𝐿
(Δ𝜎 − 𝐶𝐹𝐹), otherwise.

(5)

𝐾𝐿 is the element’s stiffness or self-stress defined (for element 𝐴) as: 𝐾𝐿 = 𝑇𝐴𝐴
𝑠 −

𝜇𝐴
𝑠 𝑇𝐴𝐴

𝑛 . The factor 𝑁𝑒𝑓
𝑆𝑡

is related to the current size of the rupture: 𝑁𝑒𝑓 is the
number of failed elements on a particular fault and 𝑆𝑡 is the slip-scaling threshold.
The slip-scaling threshold is set as an external parameter. This factor is used to
prevent small ruptures from slipping too much.

After the initial element slips, a new stress state is calculated for the entire system
using Eq. 3. Additional elements will fail if their 𝐶𝐹𝐹 = 0. In order to encourage
rupture propagation a dynamic triggering mechanism is used. Elements on the
same fault and physically close to a failed element are allowed to fail at a lower
stress than the defined failure stress, provided that the amount of stress accu-
mulated during the rupture is greater than a pre-defined dynamic triggering factor
𝜂:

𝐶𝐹𝐹𝑖𝑛𝑖𝑡 − 𝐶𝐹𝐹𝑓𝑖𝑛𝑎𝑙

𝐶𝐹𝐹𝑖𝑛𝑖𝑡
> 𝜂. (6)

The dynamic triggering factor approximates the stress intensity factor at the tip of
a propagating rupture. If failed elements have not slipped back to their equilibrium
points due to their initial failures, they are allowed to fail again and release more
stress into the system. They are not, however, allowed to slip away from their
equilibrium point. This means that they will not absorb any stress released from
newly failed elements. This behavior reflects the fact that during a rupture, failed
elements are not allowed to heal, but also may not release their accumulated stress
all at once. This process continues until there are no more failures, at which point
the event is over.

Figure 4(a) shows an example of how stress is released and accumulated over
multiple event cycles. Figure 4(b) shows how a single element failure can lead to a
cascading series of failures in a single event. Figure 4(b) also shows that elements
can fail multiple times during an event but will not accumulate additional stress
after they fail.

A Virtual California Simulation

In order to illustrate the types of results that Virtual California produces, seven
simulations were run on the model shown in Figure 2. Each simulation uses a
different value of the dynamic triggering factor 𝜂 (Eq. 6) and all of them were run
for 50,000 simulated years.

The results are shown in Figs. 5 and 6. These plots are used because they allow a
direct comparison with observed quantities. Thus we can evaluate how well Virtual
California represents seismicity in California.

A particularly important scaling relation in seismology is the Gutenberg-Richter
frequency-magnitude relation:

log 𝑁𝑐 = 𝑎 − 𝑏𝑀 (7)

where 𝑁𝑐 is the total number of earthquakes with magnitude greater than 𝑀, 𝑏 is
a near universal constant in the range 0.8 < 𝑏 < 1.1, and 𝑎 is a measure of the
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Event shown in detail below
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(a) CFF vs time of a series of events
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(b) CFF vs sweeps for the event at 𝑡 = 593.187

Figure 4: Top The CFF for each of the 48 elements that make up the Parkfield
section of the San Andreas fault. Drops in the CFF correspond to events. Large
events are characterized by many elements undergoing large CFF drops. Bottom
The sweeps that make up the event at 𝑡 = 593.187. The element that triggers the
event is in bold. The initial failure triggers a cascade that results in all elements
failing.

level of seismicity. What Eq. 8 tells us is that for every ∼ 10 𝑀 = 5.0 earthquakes,
for example, one can expect ∼ 1 𝑀 = 6.0 earthquake. The Gutenberg-Richter
relation for the results of the Virtual California simulations are shown in Figure 5.
Results are given for seven values of the dynamic triggering factor 𝜂. For large 𝜂
rupture propagation is inhibited and there are fewer large earthquakes. For small 𝜂
ruptures propagate freely and large earthquakes dominate. This figure shows that
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California observed seismicity and 95% confidence bounds (UCERF2)
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Figure 5: Frequency-magnitude statistics for seven Virtual California simulations,
each with a different values of the dynamic triggering factor 𝜂. The red dashed line
and error bars the 95% confidence bounds on the observed seismicity in California
as reported by UCERF2 [18].

a M∼7.6 or larger earthquake is expected about every 100 years. Also shown in
this figure is the observed seismicity in California as reported by UCERF2 [18]. The
drop-offs for events below M∼6.3 and above M∼7.3 are related to limiting aspects
of the fault model’s geometry. The magnitude of an earthquake is related to the
surface are of ruptured faults by [19]:

𝑀 ∼ log(𝑆𝐴) (8)

where 𝐴 is the event rupture area and 𝑆 is the event slip. Hence the fall-off of events
at large magnitude is related to the maximum surface area of faults in the model.
The fall off at low magnitudes is related to the element size. Smaller elements
would allow smaller magnitude events to occur.

Several other empirical relationships between earthquake observations were re-
ported by Wells and Coppersmith [20]. As an example of how the output of Virtual
California compares to these relations, Figure 6 shows the relationship of event
rupture area to event magnitude. There is some scatter in the Virtual California
data, however, the relationship reported in [20] is based on 148 events while there
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Figure 6: Magnitude versus rupture area for all events in two Virtual California
simulations, each with a different value of the dynamic triggering factor 𝜂. The red
dashed line is the empirical relationship as reported in [20].

are over 100,000 events in the Virtual California data. It is encouraging that the
simulation does so well in reproducing the empirical relation over such a large
number of events.

Information Theoretic Measures for Virtual California

In order to explore how tools from information theory can be used to analyze output
from Virtual California, I begin with the simple fault model shown in Figure 7. This
model is a vertical square, three elements wide and three elements deep. Each
element is two kilometers square with a slip rate of 1× 10-10 ms-1 and a breaking
stress of 1×107 pascals. The direction of the slip is right lateral strike slip, or in other
words, if one were to stand on the ground looking at the fault the ground on the
opposite side of the fault would move to the right. In order to remove asymetrical
effects caused by the surface of the space in which the fault is embedded, the top
of the fault is 50 kilometers below the surface. An example of the 𝐶𝐹𝐹 (Equation
4) as a function of time for each of the nine elements is shown in Figure 8. There
is clearly some periodic structure in Figure 8, but the frequency of events is not
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Figure 7: The three cell by three cell fault used in my initial studies. Each element
is a two kilometer square.

obvious and the clustering of events appears chaotic.

To better understand the time series presented in Figure 8 I plot the map for each
element’s 𝐶𝐹𝐹 in Figure 9. Before plotting I normalize the 𝐶𝐹𝐹 so the lowest val-
ues (ie. less stress applied to the element) are mapped to one. 𝐶𝐹𝐹 = 0 still cor-
responds to the point at which the element breaks. Each element is normalized to
its own lowest value not the lowest value of 𝐶𝐹𝐹 on the fault, so the magnitudes of
𝐶𝐹𝐹 plotted here relative to each element. Because the plot is 𝐶𝐹𝐹(𝑡) vs 𝐶𝐹𝐹(𝑡+1),
these maps give a sense of the types of 𝐶𝐹𝐹 changes that the elements undergo.
In general for each element the changes in 𝐶𝐹𝐹 fall into two regions: a) points that
are in a wedge below the line at 𝐶𝐹𝐹(𝑡) = 𝐶𝐹𝐹(𝑡 + 1); and b) points that are in
a vertical strip where 𝐶𝐹𝐹(𝑡) < 𝐶𝐹𝐹(𝑡 + 1). Region a represents stress accumu-
lation. 𝐶𝐹𝐹(𝑡) >= 𝐶𝐹𝐹(𝑡 + 1) which means that the element is getting closer to
its breaking point at 𝐶𝐹𝐹 = 0. Region b represents stress release. Focusing first
on region a, elements on the edge of the fault show more scatter in this area than
the element in the center. This indicates that stress accumulates in smaller incre-
ments in the center element than in the edge elements. This is expected because
stress is generally higher at the edges of cracks as illustrated in Figure 3. In region
b however, there is more scatter in the center element. This seems to indicate
that the center element generally enters the rupture propagation phase described
above at a low stress but then accumulates enough stress during the rupture to
fail. When it does fail however, it releases less stress in general than the elements
at the edges.

Overall it seems in Figure 9 that the position of an element in the fault has some

11 of 21



Figure 8: The CFF as a function of time for the nine elements in the fault in Figure
7. Vertical dashed lines mark the years where events occur.

effect on its behavior. What this effect is however is not clear. To explore this
further is is desirable to calculate the entropy rate ℎ𝜇 and the excess entropy 𝐸
for each element. This presents a challenge: excess entropy and entropy rate are
usually calculated from binary data. What Virtual California gives us however is a
continuous real number between some minimum value and zero. It is not clear
from the maps in Figure 9 how this data can be easily digitized. The solution to
this problem lies in a quantity called the permutation entropy [21]. The idea behind
permutation entropy is to count the sort permutations at each word length and use
this quantity to calculate the entropy. For example, take the following time series:

𝑥 = (2, 5, 10, 1, 5, 8, 20, 3). (9)

There are seven words of length two in 𝑥: (2,5), (5,10), (10,1), (1,5), (5,8), (8,20),
and (20,3). The two possible sort permutations here are first number bigger than
last number (1,0) and last number bigger than first number (0,1). There are five
(0,1) permutations and two (1,0) permutations. The permutation entropy for this
word length is then:

𝐻(2) = −
5
7

log
5
7

−
2
7

log
2
7

≃ 0.863, (10)

where the logs are base 2. For word length three, there are six words in 𝑥: (2,
5, 10), (5, 10, 1), (10, 1, 5), (1, 5, 8), (5, 8, 20), and (8, 20, 3) with permutations
(0,1,2), (1,2,0), (2,0,1), (0,1,2), (0,1,2), and (1,2,0). The permutation entropy for
words of length three is:
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Figure 9: Return map for the time series in Figure 8. The three by three grid
represents the fault in Figure 7 and the map for each element is plotted at that
elements position in the fault.

𝐻(3) = −
3
6

log
3
6

−
2
6

log
2
6

−
1
6

log
1
6

≃ 1.459. (11)

Using this technique the permutation entropy can theoretically be calculated for
any time series. To test this, I applied the algorithm to several known cases: the
fair coin, the period eight process, and a uniformly distributed random variable.
The results are shown in Figure 10. As can be seen in the figure, the permutation
entropy reproduces the results of the block entropy calculation of the correspond-
ing binary process.
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Figure 10: Tests of the permutation entropy calculation on several known systems.
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Figure 11: The effect of data length on the calculation of permutation entropy. The
data used here was generated by a fair coin. At large word length 𝐻 rolls off for
smaller data sets.

A major issue with using permutation entropy is illustrated in Figure 11. In order to
get an accurate calculation of 𝐻(𝐿) enough data is needed to sample the number
of permutations completely. For words of length 𝐿 there are 𝐿! permutations,
so for example, words of length 10 have 3,628,800 possible permutations. This
means that data that contains 106 length 10 words is needed for a good sample.
In practice the data being analyzed may not contain a complete set of permutations
so the actual amount of data needed will depend on the system being analyzed.
Figure 11 illustrates this effect, the value of 𝐻 rolls off at higher word length for
small datasets.

14 of 21



Run Run length in years Number of events produced
1 1,00,000 133,110
2 3,000,000 399,275
3 6,000,000 796,465
4 9,000,000 1,195,220
5 10,000,000 1,327,770

Table 1: The length of the various runs used to determine the the systems sensi-
tivity to the under sampling effect.

element 0
element 1
element 2

element 3
element 4
element 5

element 6
element 7
element 8

h μ

1.0

1.2

1.4

number of events in dataset
0 2 4 6 8 10 12 14×105

Figure 12: The change in ℎ𝜇 for each element in the fault in Figure 7 calculated
using different size datasets. For large datasets ℎ𝜇 changes very little indicating a
complete set of permutation samples.

To test how data from Virtual California is effected by the issue of undersampling I
ran the simulation for several different time spans and calculated the permutation
entropy up to word length 15. The time spans and the resulting number of events
are listed in Table 1. I then estimated the entropy rate ℎ𝜇 and the excess entropy
𝐸 using:

ℎ𝜇 ≃ 𝐻(15) − 𝐻(14)

𝐸 ≃
15
∑

𝐿=2
𝐻(𝐿) − ℎ𝜇. (12)

The results are shown in Figure 12. Because the quantities in equation 12 use the
high word length values of 𝐻 they are sensitive to the undersampling roll off. As
we increase the amount of data sampled in Figure 12, ℎ𝜇 and 𝐸 initially change a
good deal. However as we approach 106 events the values settle down, indicating
that we are getting good samples with this number of events.

The results of calculating the permutation entropy on the fault in Figure 7 are shown
in Figure 13. As expected from the maps in Figure 9, the center figure behaves
differently than the other elements. Its entropy rate ℎ𝜇 is lower indicating that
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Figure 13: Permutation entropy as a function of word length for the elements in
the fault shown in Figure 7.

it behaves less randomly than the elements at the edges. The corner elements
have the highest excess entropy 𝐸 but do not have the highest values of ℎ𝜇. The
values of ℎ𝜇 and 𝐸 as a function of position in the fault are shown in Figure 14.

Could the results in Figures 13 and 14 be specific to the 3×3 lattice? To answer
this question I also analyzed square lattices from 1×1 element to 7×7 elements, all
with the same size elements (2km), slip rates (1×10-10 ms-1) and breaking stresses
(1×107 pascals). Results from the 5×5 case and the 7×7 case are shown in Figures
15 and 16. It is clear that the further from the edge an element is the less complex
its behavior. How the distance from the edge effects the center element is shown

16 of 21



Figure 14: 𝐸 and ℎ𝜇 as a function of position in the fault in Figure 7.

in Figure 17. Here the values of ℎ𝜇 and 𝐸 are plotted versus lattice size 𝑛. For
lattices with even lattice sizes, where there is no center element, the middle four
elements were averaged. For 𝑛 = 1 the 𝐶𝐹𝐹 is periodic with period one so ℎ𝜇 = 0
and 𝐸 = 1 as expected. The values at 𝑛 = 2 are skewed because the average is
taken over the four edge elements. For 𝑛 > 2 however, ℎ𝜇 and 𝐸 steadily decrease.

Conclusion and Next Steps

The complexity of the output from Virtual California, even when dealing with very
simple fault systems, make tools from information theory useful when analyzing the
data. From my initial analysis it is clear that elements far from the edges of faults
will exhibit less complex behavior than elements on the edges. It general these
elements experience slower stress accumulation than the elements at the edges.
It seems therefore, that the rate of stress accumulation on elements embedded in
a fault is directly proportional to the randomness of their behavior. This is only a
tentative conclusion however, more work needs to be done to verify this. It would
be useful to vary other aspects of the model and see how ℎ𝜇 and 𝐸 vary. The slip
rate and breaking stress could be changed to slow stress accumulation across
the entire fault. Also, the size of the fault could be fixed and meshed with smaller
and smaller elements to see if the effect in Figure 17 is due to euclidean distance
from the edges of the fault or the number of elements only.

With this work I have only begun to scratch the surface of what is possible with the
information theoretic tools available. Calculating the mutual information between
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Figure 15: 𝐸 and ℎ𝜇 as a function of position for a 5×5 fault.

elements would be useful. Using ideas developed in [22] spacial patterns as well
as temporal patterns can be analyzed. Looking at the behavior of models of ac-
tual fault systems is the ultimate goal. Improving our forecasting capabilities is an
important possible outcome of these studies.

*
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