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Abstract: 

CAs are a simple and therefore nice example of how a network of weakly coupled units with 

their own internal state dynamics can give rise to interesting spatial and temporal patterns of 

activity, without requiring external stimuli or supervision. My thesis work studies a period of 

retinal development that includes these same properties. Here I looked into whether CA models 

provide insight into the internal dynamics of the retina during this period of development.  

 

Introduction 

1. Motivation 

Theory and reality often become hilariously nonoverlapping as soon as one changes the scale of 

study, a classic example being the different assumptions required for Newtonian versus quantum 

mechanics. We generally keep our realities in a comfortable space where the models still 

accurately predict things. We also have the considerably less lucrative option of investigating 

systems for which models consistently fail, with the intent of finding inspiration to build better 

models. Naturally occurring biological systems are really good at exposing the inflexibility and 

cluelessness of existing models and algorithms. I do not know if CA models will contribute to 

explaining things about the retinal system that I study, but the motivation is to see if they can 

help. 

2. Why it is interesting 

The system of study is a self-organizing circuit of retinal neurons. When mature, retinal circuits 

can borrow from each other, adapt within themselves, and voluntarily inactivate. Ultimately, the 

circuits are able to convert visible light into a code that the brain uses to form a visual percept.  

Within a few days of development, the necessary cells find each other and form the appropriate 

synapses. This is all done without any top-down instruction, although genetics instruct some of 

the cell differentiation.  

Any and all insights into this process are interesting to me. I can invent any number of irrelevant, 

ultimately economic-driven incentives for why this is process is still interesting, but am feeling 

inclined, at this time, to save that energy for times of grant writing.  



3. Synopsis of project and results 

The objective here was to implement a CA model and check whether it displays any of the 

behaviors seen in the developing retina. I found the activity patterns do have similarities, but 

were not compelling enough for me to pursue this directly. However I think they may be useful 

once I figure out a few of the physical rules that govern retinal dynamics. Namely, I would like 

to identify how many distinct populations of cells are necessary for giving rise to the observed 

spontaneous dynamics before continuing with CAs. 

 

Background 

The rules governing the spontaneous retinal dynamics (referred to as “waves”) are as follows: the 

retina receives no stimulation. It is loaded with a dye that brightens when a cell fires a spike, 

which is the only indicator we have that a neuron did something. Data is based on passive 

recordings of cell activity. I will focus on imaging data, which is comprised of 1Hz sampled 

image frames of cells that are either active or not active. Activity is defined by the cell’s 

brightness compared to baseline.  Here is an image of the tiling pattern of retinal waves over 30 

seconds. The viewing perspective is looking down on the surface of the retina, and covers 

roughly 200 cells: 

  

The objective is to see if a CA model can approximate this behavior. If it does, I could use it to 

make predictions about the system. 

 

Dynamical system 

1. Particular system is a 2D lattice of cells. Each cell has its own internal state equation, and each 

cell adds some fraction of its internal state to its nearest neighbors. Cells on edges wrapped 

cylindrically.  

2. Equation governing each cell internal state is a linear circle map:   

y = r + 0.95x;  

y %= 1.0 

Gray indicates that a wave passed over that region. The grayscale 

corresponds to amount of time elapsed, with lightest gray being the 

most recent event, and darkest being the earliest. Black is baseline. 

Note that waves respect boundaries, and are for the most part spatially 

nonoverlapping across time.  



where x is the temporally previous state value. The resulting value of y is added to all nearest 

neighbors, with coupling constant c. 

Parameters to be varied: 

r- affects internal state 

c- weights contribution from neighbors 

N- number of cells, doesn’t make much difference once you exceed a 10x10 lattice size. 

3. How the terms model various aspects of the system 

The coupling constant describes the connectivity of the cells. In retina, the coupling constant is 

fairly weak, at least between neighboring cells, which are actually not directly connected. 

Roughly speaking, r governs the frequency of the internal state.  Below are time plots of a linear 

circle map with no outside inputs, for values of r at different orders of magnitude.  

 

However it should be noted that a linear circle map is by no means the only possible internal 

state dynamic. I used it because it provides more stability in a network than other functions that 

do not have inherent periodicity.  

 

Methods 

Model parameters were set to various values and the model ran for 500-1000 iterations. Each 

pixel value was logged over iterations to obtain one timeseries per pixel. For each timeseries, 

baseline level of brightness was computed by averaging, and each element in the time series was 

compared to its baseline. Any pixel value exceeding its baseline by 15% was considered “active” 

and assigned a value of 1. All other values were assigned a 0. This is the same heavy-handed 

abuse that my retinal data endures.  

 

 

 



Results 

Roughly speaking, the CA system exhibited spatiotemporally structured patterns that are similar 

to those observed in retina.  

Binarized raster plot of retina activity (white ticks indicate active cells at that time point): 

 

Binarized raster plot of CA activity with coupling 0 and r of .065 (top). Cell count is the number 

of active cells at each time point (bottom). 

 

 

 



Binarized raster plot of CA activity with coupling of .20 and r of .065: 

 

 

In terms of using information theoretic measures to assay the network, I have a few scantily 

informed, spurious opinions. Various people have successfully used mutual information versus 

spike timing differences to look for any interesting curve shapes. Here “interesting” means 

something with minima and maxima so the researcher can point out optimal parameter ranges 

and then argue that their biological system exploits that range. This may rapidly become a cliché; 

perhaps someday it will be akin to saying that a system must balance excitation with inhibition to 

display behavior that neither blows up to infinity nor dies to zero. People no longer dispute this 

in neuroscience or even in philosophy for the most part. However I maintain some faith that 

using mutual information or, conversely, entropy as a qualifier for determining functional system 

parameters can yield more subtle hints for tuning a model than assays of how many timesteps the 

system needed before it exploded or died.  

We could do this here nonetheless, although the utility of any results should be made clear before 

taken up as a central endeavor. As applied to neuroscience, information is usually based on 

distributions of distances between pairs of neurons and the distribution of relative spike timing 

between said pairs given their distances. When papers mention mutual information in 

neuroscience it often is in the context of how much time can elapse between one neuron’s 

spiking and another’s, with the largest contributions coming from whatever the majority of pair 

distance and spike timing combinations are.  In other words it is not safely dissimilar from taking 



an average. It doesn’t tell us about specificity of circuits in terms of sequences of neural 

activation, which is more central to my project since I care about circuit formation and 

refinement. As a result I have come to view measures of mutual information, when 

conventionally applied for the purpose of characterizing a system, to be a more appropriate 

conclusive step than an explorative one. It is something one can use to greatest effect after one 

already knows what is important for the system.  

Other people have looked at information content of binarized spike/no spike words. This is 

closer to what one might use for measuring entropy rate and building a word distribution library 

that cares about sequences of events, rather than simply defining a measure over which all 

sequences are pooled into a distribution.  However, people often fix the length of allowable 

words to make the calculations tractable, which reduces a lot of otherwise good debates into 

squabbles over what’s an appropriate time window. Meanwhile I’m unsure the retina thinks 

about time windows. To my knowledge it has provided no evidence of such preferences. A more 

compelling use of timescale of spiking, to me, is that it could be used to convey different aspects 

of a stimulus, such as distinct spatial frequency ranges (a lame example but hopefully conveys 

the idea).  It is my belief that retinal neurons can use time to expand channel capacity of their 

axons, through which various independent or complementary aspects of a stimulus can be sent 

using the same cable provided it is somehow kept distinct in time. There is evidence that neurons 

adjust their own membrane timescales for spiking depending on the type and temporal variance 

of inputs received, and receptive field fits improve to near-competence when the model 

incorporates spatial and temporal aspects of a stimulus.  

 

Conclusion 

To conclude I think CAs are a good model for constructing a self-sustaining system of cells. I am 

not convinced of their far-reaching utility as an explorative tool in neuroscience, but I think they 

may prove more useful to retinal wave research once a few more facts about the physiological 

basis of waves is filled in. Currently I have very little insight into what the internal state 

dynamics are, or what the coupling parameters should be, or if I would benefit from combining 

two or more populations of CAs with different internal state equations. The search space is 

unfeasibly large. 

I think a better approach would be to find eMs for calcium imaging data, and look for states that 

are predictive of waves. I’d first thought MEA-based spike trains, with their ultra precise 

sampling of 10000Hz, would be the best option. However after trying a few things, the imaging 

sampling of 1Hz is actually starting to look like a blessing rather than a curse. Never thought I’d 

say that, and may retract that statement soon, and that’s as much as I can say conclusively at this 

time.  
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