Cellular automata and neural computation

Alana Firl NDAC Spring 2012

The brain is very large.

The retina is a relatively small brain.

Neuron communication rules:

- 1. Spikes
- 2. Synaptic strength
- 3. Depolarization vs hyperpolarization

Retinal waves self-organize circuits.

Spontaneous activity has also been studied in the following areas:

Hippocampus Cortex Brainstem Cerebellum Cochlea

How to quantify waves?

Two other questions.

- 1. What is the physical mechanism?
- 2. Models: what kinds of systems display self-sustaining spontaneous activity?
 - Recurrent networks
 - Excitatory/inhibitory networks
 - CAs

Excitatory/inhibitory Model

Integrate and fire neurons
Adjustable synaptic weights
Adjustable number of synapses per cell

- •Adjustable balance of
- excitation/inhib
- •Constant noise input

Problem: balance issues, requires overdamping and constant noisy input

More excitation

More inhibition

CA Model- linear circle map

Neurons obey some internal function
Adjustable coupling strength
Adjustable number of neighbors per cell
Adjustable balance of excitation/inhib

Where to go from here?

Strengths of CA models:1. Freedom in the internal state2. Self-sustaining3. Naturally gives rise to spatiotemporal patterns

Many similarities to excitation/inhibition models without the same caveats.