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Typical Free Coiling Patterns

Cylindrical Conical Reversals
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State of the Field - Common Misunderstandings about Tendril Free Coiling

1) Free coiling tendrils are not interesting because they (presumably) are functionally irrelevant to a vine if they are not support-
ing any weight or stabilizing the plant from environmental forces.

2) Perversions (which results in a shift in handedness of the coil direction) do not happen in free coiling tendrils. Perversions only
occur in tendrils that are contact coiling while both ends of the tendril are fixed. Look up and see that this isn't true.

3) Differential growth is not the same process as differential contraction and elongation during coiling, although they share some
chemical signaling, mechanical and morphological similarities.

4) We have not found a single article whose primary subject matter is free coiling in tendrils; the few articles about nonlinear dy-
namics in coiling address only contact coiling or general twining morphology in vines.



Existing Tendril Coiling Models:
Invariant Helical Contact Coils Explained Using Mechanical Models Based upon
Kirchhoft’s Equations for Rods with Intrinsic Curvature at Equilibria in Minimal Energy State

The Kirchhoff model of rod dynamics describes inex- F' =dj, (2)
tensible rods whose length is much greater than the cross / - - .
+ X = X + dr» X d»
sectional radius. Using these fundamental assumptions, Mo+ ds X F=dy X di + dy X das )
all the physical quantities assoqiated with the filament M= (k — Kl(u)) di + (ky — Kéu)) d
are averaged over the cross sections and attached to the ()
central axis. The total force F = F(s,t) and moment + (ks — k3 )ds. 4

M = M(s,t) can then be expressed in terms of the local
basis. The conservation of linear and angular momentum
leads to the Kirchhoff equations which, in scaled variables
and for a rod of circular cross section, are [8]

From Alain Goriely and Michael Tabor, “Spontaneous
Helix Hand Reversal and Tendril Perversion in Climbing
Plants,” Physical Review Letters 80:7 (16 Feb. 1998): 1564-
67.

Kirchhoft’s equations are used to explain the presence of
\ one or more perversions in a coil that is fixed at both ends.
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FIG. 2. (A) Sketch of a helix hand reversal. (B) The optimal
% solution curves in the 77 — kr plane together with the two
optimal helices (circles) obtained for K =1/4, I' =3/4,
n=1/8, and ¢ = ¢, = 0.286. The inside curve is the one
obtained by the nonlinear analysis for the central piece.




How to Make an Invariant Helix: Twist + Bend

MECHANICAL PRINCIPLES OF COILING

Contact

Twist ****

Curvature due to thigmotropism produced by
differentiated elongation. Cells on the contact
side contract whereas cells on the opposite side
elongate.



Our Method for Studying the Nonlinear Dynamics of Free Coiling

I. Create a Reasonable Interdisciplinary Hypothesis of the Biological, Chemical and Mechanical Processes that Generate Coiling:
1) Research to compile a holistic view of the major facets of the “system”;
2) Use this hypothesis as the basis for a mathematical model that simulates the dynamics and patterns of free coiling.

II. Harvest and Measure 500 Free Coiling Tendrils from Christina’s Passionflower Vine for Statistical Analysis Using Computational Mechanics:
1) 5mm increment per “symbol,” starting at the tip of the tendril.

2) “Subsymbols” of “symbol” designate range of coil diameter [d, D, 2], periodicity [p, P, 3], handedness [L, R, S], perversions or not [0, 1], angular axis
changes [4, 9, 8], self-contact or not [c, f].

3) Possible “symbols” by general large category = 81; all possible “symbols” by precise subsymbol categories = 324.

~3400 symbols overall for all 501 tendrils, circa 17 meters of total coil length measured!
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III. Use Python Scripting and Computational Mechanics to IV. Use our Mathematical Model to Generate Simulated Free Coils and Analyze the
Create Epsilon-Machines for the Real Tendril Data Simulated Tendrils using Computational Mechanics to Create Epsilon-Machines
for the Simulated Tendrils

-0.00625
-16.2

0.11 1 New tendril

| 4

. 0.001 Mew tendril

First Simulated Variant Helix Generated Using

Turing’s Reaction-Diffusion Equations
0.06 | New tendril

V. Compare the Epsilon-Machine Results for the Real and the Simulated
Tendrils to Ascertain the Strengths and Weaknesses of our Method and
the General Accuracy via Predictability of Tendril Free Coiling Dynamics,
Based Upon our Hypothetical Biological System and its Corresponding
Mathematical Model.

0.22 ] New tendril




Tendril Growth and Coil Patterning - Other Views on the Vine

0504 6;30am Growing 0504 1:20pm
with a Perversion




General Diagram of Bidirectional Coiling Tendril Tissue




Working Hypothesis of Tendril Coiling Process:
Step 1 - Auxin Triggers Cell Elongation on Convex Side of Coil

Light
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Asymmetric growth

Above: Phototropic response showing PIN3 polarization
carrying auxin to side opposite light toward greatest auxin
concentration, where it triggers cell elongation causing
the plant to curve and grow toward the light. From Ding,
Zhaojun et al, “Light-mediated polarization of the PIN3
auxin transporter for the phototropic response in Arabi-
dopsis,” Nature Cell Biology 13:4 (April 2011): 447-53.
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Left: Diagram showing auxin dif-
fusion into a cell and active trans-
port out of the cell via PIN1. From
Benjamin, Rene, and Ben Scheres,
“Auxin: The Looping Star in Plant
Development,” Annual Review of
Plant Biology 59 (2008): 443-65.
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IAA gradient

Above: Diagram showing auxin gradients and polar auxin transport
in Arabidopsis root apex. From Bhalero, Rishikesh and Malcolm
Bennett, “The case for morphogens in plants,” Nature Cell Biology
5:11 (November 2003): 939-42.



Step 2: Role of the Gelatinous Fiber Layer in Tendril Contraction
on the Concave Side of the Coil

Bidirectional Coiling Unidirectional Coiling -
Coiling in either a clockwise or counterclockwise di-  Coiling in only one direction is achieved by an
rection is achieved by a symmetrical cylindrical lay-  asymmetrical g-fibre array (blue cells) on only
out of gelatious fibres (g-fibre) (blue cells in above  one side of
diagram) around the center of tendril. After coiling,  the tendril.
the g-fibre uses lignification to stabilise the volume

of elongated side.

G-fiber action in G-fiber cells causes contraction and
twisting. For bidirectional coiling tendrils, there is a
cylinder of G-fiber cells around the tendril, respon-
sive to touch from any side. Only a portion on the
contact side become active, whereas auxin causes
cell elongation on the side opposite contact.

G-Fiber cells have 3 cell wall layers: Primary, S1
secondary, and S2 secondary, each of which has cel-
lulose microtubules (MTs) that provide structural
support. The alternating orientation of MTs is key to
cell deformation patterns under G-fiber action.




Hypothetical Model of the Process of Tendril Coiling:

G-Fiber Contraction on Contact Side + Oppositional Auxin Gradient-Induced Cell Elongation

Contraction and Twist
from G-Fiber Action on
Contact Side (Concave
Side)

Contraction Mechanical Stress
Travels Longitudinally Up and
Down the Concave Side from G-
Fiber Contraction + Differential
Lignification for Variable Stiffening

Cell Elongation from High
Auxin Levels on Side Opposite
Contact (Convex Side)

Elongation Mechanical Stress
Travels Longitudinally Up and
Down the Convex Side from

Auxin-Induced Elongation




Nonlinear Coiling Pattern Dynamics: Consistent Structural Form + Stochastic Variability

What Might Account for these Dynamics?
1) Multiple contact locations with simultaneous or temporally delayed coiling processes at work on the same tendril that have to negotiate each other;
2) Variations in lignification across the region of the contact zone of active g-fibers may cause variations in coiling diameter, angle, and periodicity;

3) Perversions may be caused by two simultaneous coiling processes on the same tendril meeting, by self-contact where the tip of the tendril becomes
fixed to itself, and perhaps also by a PIN polarity reversal that shifts auxin-triggered cell elongation to the opposite side of the tendril;

4) Variations in the auxin gradient on the elongating side of the tendril may cause proportionally greater or lesser elongation (in a similar fashion to
how variations in lignification on the contact side are also affecting the coiling pattern).



Understanding the Nonlinear Dynamics of Tendril Free Coiling via Computational Mechanics

Statistical Analysis of Real Tendril Morphologies

d=27.77%
2=26.17%
d =0-2.99 mm
D =3-7.99 mm
D =46.06% 2= 8mm

Shannon Entropy
H(D) = 1.53457054378 bits

First Order Markov Chain for Diameter

Diameter

This maps the probability of seeing any subsymbol given knowledge of only

the preceding subsymbol.
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Periodicity (# of Coils/5mm)

p=53.32%
p =0-1coil
P =1-4 coils
3 =>4 coils

P =27.29%

3=19.39%

Shannon Entropy
H(P) = 145391217496 bits

First Order Markov Chain for Periodicity

BIo&Igjentropies for length-L words describing sequential tendril periodicity
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Handedness

L=51.73% L = Left (Counterclockwise)
R = Right (Clockwise)
S = Straight (in a Perversion)

R=38.39% Tip Starts Right Straight in the middle
R of a perversion
S
Shannon Entropy
H(H) = 1.3521963444 bits Tip Starts Left
L
First Order Markov Chain for Handedness
Blocksentropies for length-L words describing sequential tendril handedness
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Pervertedness

0=78.14% 0 = No Perversion

1 = Perversion

A perversion occurs when a coil
1=21.86% changes its handedness/directionality.

Shannon Entropy
H(Perv) =0.757692140763 bits

1 0 1 1 1 0

“1” gets repeated if the perversion falls into more than one measure-
ment, so consecutive ones may imply either the same perversion and it’s
long, or multiple perversions back to back. If the handedness changes
on either side of the perversion, this means there was an odd number of
perversions. If the handedness is the same on both sides of the perver-
sion, then there’s an even number of perversions.

First Order Markov Chain for Pervertedness

Block4%ntmpie5 for length-L words describing sequential tendril pervertedness
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Angular Axis Rotation

4=76.57% 4 = 0-44.99 degrees
9 = 45-90 degrees
9-15.14% 8 = 180 degree reversal

Shannon Entropy
H(A) = 1.00505665524 bits

First Order Markov Chain for Angular Axis Rotation

0.1819 | 0,101 New tendril

Bloczll(oentropies for length-L words describing sequential tendril axis rotation
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Contact Status

f=94.45%

¢ = self-contact
f = free

Shannon Entropy
H(C) =0.309208309792 bits

First Order Markov Chain for Contact Status
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First Epsilon-Machines
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0.25 | New tendril
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Unifilar E-Machine for Subsymbol Handedness (Left, Right, Straight), Morph Length 2 (continued on next page)
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Unifilar E-Machine for Subsymbol Periodicity (“p”, “P”, “3”), Morph Length 2 (continued on next three pages!)

Unifilar E-Machine for Subsymbol Periodicity (“p”, “P”, “3”), Morph Length 4 (continued on next three pages!)



Unifilar E-Machine for Subsymbol Periodicity (“p”, “P”, “3”), Morph Length 2 (continued on next two pages!)

Unifilar E-Machine for Subsymbol Periodicity (“p”, “P”, “3”), Morph Length 4 (continued on next two pages!)
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Unifilar E-Machine for Subsymbol Periodicity (“p”, “P”, “3”), Morph Length 2 (continued on next page!)

Unifilar E-Machine for Subsymbol Periodicity (“p”, “P”, “3”), Morph Length 4 (continued on next page!)



Unifilar E-Machine for Subsymbol Periodicity (“p”, “P”, “3”), Morph Length 2 (final page!)

Unifilar E-Machine for Subsymbol Periodicity (“p”, “P”, “3”), Morph Length 4 (final page!)



Brief Overview of Significant Factors in Real Tendril Data

159 out of 324 (49.07%) Total Possible Symbols Have Zero Probability in our Real Tendril Data: Why?

16 Sub-symbols total, from 6 categories, combine to create each symbol: d, D, 2,p, P, 3,L,R,S,0,1,4,9,8, ¢,
[0,1,2,3,4,5] = 23519c¢ (example) The ones that have zero probability for the most part are these:

1) They have a “c” (“self-contact”) at position 5; only 5% of our measurements have “c”, so 95% don't.
2) They have an “S” (“straight”) but also have a “P” (2-4 coils) or a “3” (4+ coils): straight tendrils are not coiling tendrils.

3) They have an “8” or a “9” at position 4 - only 8% of our measurements overall have an “8” (180-degree reversal), and only 15% have a “9” (90-degree
turn).

4) They have a “D” or a “2” (both of which mean, fairly sizable to large coils), but also have a “P” or a “3”, meaning, they have LOTS of fairly large coils.
In general, our tendrils may have 1 or 2 large coils usually in isolation (one in the middle somewhere, or, at the end when it is opening out to the base).
Mostly we have average to small tight coils of higher periodicity.

5) They have an “S” (“straight”) but also have a “0” (“no perversion”); we very rarely used “S” when it was not also associated with a “1” (“perversion”)
since usually we could usually tell which way it was twisting.

Overall Entropy of 324 Symbols: 5.48981401109

Real Tendril Top Twenty:
Only 20 symbols out of 324 have a greater than 1% probability of occurrence (1.003% - 8.999%).
4 of the top 5 likely reference the number of measurements and frequency with which they occur when a tendril coil is ending, meaning, when it is

widening and opening up toward the base. These are: 2pL04f’, 2pR04f’, ‘DpL04f’, ‘DpR0O4f’ The other one in the top 5 is 2pS14f’ which is the symbol
that represents a perversion filling the 5mm increment.

=
“2pLO4f’ 2pRO4L, ‘DpL04L, ‘DpROAS’ 2pS14f’
In the top 20, 14 are symbol “pairs” where they are the same symbol, just one is Left-handed and one is Right-handed. These are: 2pL04f’/ 2pR04f’,
‘D3L04f°/'D3R04f, ‘DPL04f"/ ‘DPRO4S, ‘DpL04f’/ DpRO4L’, ‘d3L041°/d3R041, ‘dPLO4f°/'dPRO4L’, ‘dpL04f°/'dpR0O4f". This reflects the high freqency of
these particular symbol patterns, despite the overall difference that there are more Left-handed coils (51.73%) than Right-handed coils (38.39%).



, Turing OOE setup: Building a 1D Mathematical Model to Simulate

Parameters:
As = .12 #.2 # Strength by which activator is induced by itself Tendril Free Coiling Morphologies
Ad = .4 #.1 # Decay rate of activator
E = .2 #.17 # Intensity by which the activator is repressed by the inhibitar
C = .1 #@7 # Strength by which inhibitor is induced by octivaton
0 = .19 # lecay rate of inhibitor
E = .8% # Background rate of octivotor generation?
Du = .1 #1 # Diffusion coefficient for activator
Ov = .6 #6 #.4 .2 # Diffusion coefficient for inhibitar
# ICs:

#u = zerosiHsegments, 'float') # actiwvator

#y = zeros{Hsegments, 'float') # inhibitor

u = H.1*random. rond{Nsegments) # activator

ulHsegments/2: Hsegments] = S*ul[Msegments/Z:Nsegments] # for assymetric IC w/ noise (greater noise w/ greater signal too)
ul175] = 1. # for peference in figuring out spocetime mop

v = H.1*random.rand{Nsegments) # inhibitor

dudt
dwdt

LinSigmoid{{E + RAs*u - B*+),5igStart,SigEnd} -2.*0Du*u + Du*{LuNeighbs + RuNeighbs)
C*u - D¥v - 2. #%0wky + Dy¥(LwNeighbs + RvNeighbs)

#Fy o= u o+ dudt*dt

#y =y o+ dudt*dt

u=LinSigmoid({{u + dudt*dt},d,ulAx) # shouldn't have negative u! should saturate though?...
v = v + dydt¥dt

if remainder(time, floor(Ht imesteps/EvStepsShown)) == A:
EvwStep += 1
One0TuringEvol[EvStep,:] = u

# HOW translate final u to twist and bend

R MO e e 1D Turing Reaction-Diffusion Helical Model:
3= 17t # Ut ame. the consequnses of vanging this paranster? Achieves Variation in Diameter, Periodicity and
?:;1leng:h23.*pif1sa. #0i/2.5 #pi/8.  # Nore generally, could be an array, either for sweeping through a parameter or even having phil change throughout 1\11ggle Axis, but No Perversions

#theto2 = ufullAX*thetalAR # now an array

#ds = sqrtipow((dl+g*sin{theta2)),2) + pow(g*{l-cos{theta2}),2}} # gssuming phil and theta2 are constant...

# Initinte arrays for stored info {only really need to store x for visuslization, but moy be helpful to hold the d_i's for anolysis)

x = zeros((3,Hsegnents), ' flogt') # to hold space curve, wisl

dl = zeros((3,Nsegments), ' float') # tangent to space curve: difs) = dxfds

d2 = zeros({3,Hsegments), 'float') # grthonormal to d1 and d3: dz2(s) = crossid3,dl)

d3 = zeros{({3,Nsegments), 'float') # towards axis of second rototion in local basis

5 = zeros({l,Hsegments), 'float') # could just describe whole s(i) from the outset if phil and thetaZ will be constant...

# Initial conditions

x[:,8] = array([H.,8.,8.1) # start @ origin
di[:,8] = array([1l.,8.,8.]1) # w-hat
d2[:,8] = array([8.,.1..8.10 # y-hat
d3[:,8] = array([@.,8.,1.]1) # z-hat
s[A] = A.
# |terote finite difference equations
#
far i in arange(l,Nsegments,l, ' int'):
theta2 = ulil/ulAR*thetallfl # arange(l,Msegments, 1, "int'} only lets i get to Hsegments-1
ds = sgrt{pow({dL+g*sin{theta2}},2) + pow{g*({l-cos(theta2}},2))
dltemp = cos(phili*di[:,i-1] - sin{phil}*d2[:,i-1] # intermediate dl after phil rotation (separate step for computational ease, although coul
be woven into the difference eqn.s directlyl
d2[:,il sin(phil)*d1[z,i-1] + cosiphili*d2[:,i-1] # final d2, since second rotation does not affect d2

dil:,i] = sin{thetaZ)*dliemp + cos(thetaZ)*d3[:,i-1]

dil:,i] = cos(thetaZ)*dltemp - sin(theta2)*d3[:,i-1]

# gbove order of coloulating x,d1,d2, and d3 con be interchanged; put this woy for conceptusl convenience
=[8,i] = i*ds

xlz,i] = x[:,i-1] + g*(1-cos(theta2))*ditemp + (dL + g¥sin{theta2))*d3[:,i-1]

plot3dixla, 1 tolist(),x[1,:].talist (), x[2,:].tolist(),s[@,:].tolist (), color=(A.,A.,1.), tube_radius=R) #@.1)
axesicolor=(8.,8.,08.))



Turing Reaction-Diffusion Patterns across 1D Simulated Tendril: Playing with Parameters

Spacetime plot of 1D Turing pattern
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Turing Equations for Activator-Inhibitor dynamics from Fujita, Hironori et al, “Re-
action-Diffusion Pattern in Shoot Apical Meristem of Plants,” PLoS ONE 6:3 (2011):
e18243.

The basic dynamics of the activator ;) and inhibitor (v;) in the i-th
cell is described by the following form of equations:

dui = O(E + A,u; — Bv;)— Aqu; + D, Z (uj—w;)  (la)
dt &
Jj=neighbors
dv;
dt =
Jj=neighbors

with the constraint condition in the activator synthesis (Fig. 1B),

'I'I:I} =!;5'|:I_}= Adl;"mx 1+ Zx/(Adunmx_)_ 1 (23)
{/ 1+ [2x/(Adthmar) 1"
ar
0 (x<0)
) =p(x)={ x (0<x<Aqthnax) (2b)

Adunm (Adunm < X_}

where A, =A+ Ay, Ay, B, C, D, E, D, D, tt;0, = Upp i, and n
are positive constants, and # is the equilibrium value of the activator
(#;) n a smplified form by Equations (3) without space. ¢(x) is a
sigmoidal function ranged between 0 and A4y, (Fig. 1B). The
constraint on the activator synthesis 0 < ®(x) < Ajtmax results in that
on the activator concentration 0 < g < tq,, because the equilibrium
condition in Equation (la) without space leads to the equation
u; =D(E+ Asu;— Bv;)/ A4. Three terms of the right hand side of
Equation (la) or (1b) represent the synthesis, degradation, and
diffusion of the activator or mhibitor, respectively. That is, the
activator is induced by itself n the strength A, is repressed by the
nhibitor in the mtensity of B, decays at the rate A4, and diffuses
between adjacent cells with the diffusion coefficient D,,. On the other
hand, the inhibitor i mduced by the activator in the strength C,
decays at the rate D, and diffuses with the diffusion coefficient D,.



Still to Come: 2D Modeling Approach for Tendril Coiling Simulation

Our 2D model will unfold the tendril
“cylinder” as diagrammed at the left
into a 2D rectangle with gradient
flow wrapping across the edges.

Gradient Flow Model:

From Contracting G-Fiber Contact Side with Lignification (L)
to Elongating High-Auxin Level Side (A) Opposite Contact

While the whole tendril coil is not a perfect example of Turing’s reaction-diffusion process, auxin is “self-regulating” in that auxin-triggered genes
inhibit auxin production when the auxin-triggered process is complete. In this sense, auxin is both an “Activator” and its own “Inhibitor” in Turing’s
reaction-diffusion equation.

Similarly, researchers hypothesize that lignin also exists in varying levels on the contact side in the g-fiber cell zone, with higher lignification zones
causing greater stiffness during the contacting and twisting process.

We therefore are using reaction-diffusion equations to establish variable levels across our 2D tendril, in order to study its effectiveness in producing
variable helical coiling patterns.

Our 2D mathematical model also establishes a relationship (___of some sort? ) between the elongation and contraction sides of the tendril, and a
proportional relationship between auxin level and amount of elongation.



Still to Come: Constructing Epsilon-Machines of Simulated Free Coiling Tendrils

Comparison of Epsilon-Machines for Real and Simulated Tendils: What do we learn? (22?2222

Final Results: Analysis of our Method and Models, and Emergent Structures in Free Coiling Tendril Nonlinear Dynamics
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