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Abstract:  Measurement devices that we use to examine systems often do not 
communicate all of the information hidden in the system, by coarse-graining it to give a 
simpler output.  We examine how coarse-graining on 1-D cellular automata affects our 
understanding of the system by looking at the how the entropy rate of the spatial 
configuration changes with respect do different coarse-grainings.  We find that the 
entropy rate of most of the cellular automata we simulated does not change significantly 
when we consider different elements of the simplest coarse-graining rules.  However, for 
rule 18, there were fluctuations in the entropy rate that hinted at structure that is derivable 
using the strategies outlined by Hanson and Crutchfield [3]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction: 
  

Whenever we observe a system, we are viewing it through a measuring device.  
Often, systems are far too large for us to be aware of everything, so our measuring 
devices will reduce the amount of information by providing a “coarse-grained” version of 
the system to the observer.  When we look at a television screen, our eyes average over 
the individual red, green, and blue pixels, returning an impression of the color, but 
reducing the amount of information available to the viewer.  This is particularly true in 
statistical physics.  Physicists will consider systems that contain huge numbers of 
particles, each of which have many degrees of freedom, but in their analysis of the 
system, they will only consider a few measurable bulk quantities, such as temperature, or 
chemical potential. 
 How does limiting your information about a system like this change your 
understanding of the system?  What does it take to completely obscure the details of a 
system, such that it would be impossible to reconstruct a system that reproduces the same 
behavior?  How hard is it to have a measuring device that will allow you to reconstruct 
the behavior exactly?  Is it possible the system that is implied by the data that comes from 
our measurement device functions differently than the parent system?  While I don’t 
answer these questions, they provide the motivation for examining the nature of coarse-
graining. 
 To tackle this problem, we consider one-dimensional cellular automata, because 
they are simple systems that have been studied and are well understood.  To coarse-grain 
these systems, we take the spatial configuration of the system at a given time in the 
systems evolution and put it through a transducer, which functions as our measuring 
device.  Just looking at the new grid after putting the system through a transducer doesn’t 
reveal much about the differences between the systems.  Thus, for each spatial 
configuration we calculate the entropy rate.  This gives a metric for comparing the time 
evolution of a coarse-grained system with its parent system. 
 We consider five different rules for cellular automata.  For each rule, we generate 
a list of one thousand random 1’s and 0’s as our start state.  Then we iterate the rule on 
that state five hundred times to carry out five hundred time steps.  This generates a one 
thousand by five hundred grid of ones and zeros, which has one spatial axis, and one time 
axis.  Then, for each time step, we take the spatial pattern, and we coarse-grain it by 
putting every other pair of bits through a function that maps to a zero or a one.   

Of the rules 18, 22, 54, 90, and 110, we find that rules 22, 54, and 90 don’t yield 
significant changes in the entropy rate for the coarse-grainings that we use.  For rule 110, 
we find that the entropy rate decreases with time more slowly for the course-grained 
system than for the parents system.  For rule 18, we find that there is a variety of behavior 
for the different coarse-grainings that we consider.  One of the course-grained systems of 
rule 18 hints at the propagating particles that exists between different domains in the 
cellular automata, as illustrated by Hanson and Crutchfield [3]. 

 



Background: 
  
 A one-dimensional cellular automata is a system in which the current state is 
expressed by a string of ones and zeros.  Then, you deterministically operate on your 
current state to get the next state.   We consider the subset of cellular automata in which 
the rules are based on nearest neighbors.  This means that if you are trying to find the 
next state of a location in your string, you only use your current state, and that of your 
nearest neighbors.  There are only 256 rules for how to do this.  Figure 1 and 2 illustrates 
how this is done with rule 18. 
 

 
Figure 1: Each triplet maps to a number which is defined by the rule. 
 
 

 
Figure 2. 
 
In this case, we start with a list of random 1’s and 0’s, and for rule 54 the result looks like 
Figure 3., where the oranges cells represent 1’s and the white cells represent 0’s. 



 
Figure 3. 
 

 
Methods: 
 
 For each of the rules 18, 22, 54, 90, and 110, we start with a different randomized 
initial state of one thousand 0’s and 1’s.  Then, we iterate five hundred times to get a 
1000x500 matrix.  We set up the boundaries of our list states to be circular, which means 
that the 0th cell is the right nearest neighbor of the 999th cell. 
 For each of the constructed space-time diagrams, we coarse-grain it in five 
different ways.  We coarse-grain a diagram in a similar way to determining the next 
element in a cellular automata.  In every spatial configuration, for every other pair of 
cells we map those two elements to a one or a zero, which effectively halves the spatial 
extent of our system.  There are 16 possible rules to do this type of coarse-graining.  
Figure 4 shows how rule 4 works, and Figure 5 shows how it is implemented. 



 
Figure 4: Each possible pair maps to a number that’s defined by rule 4. 
 
 

 
Figure 5:  (Top) The parent spatial configuration.  (Bottom) The coarse-grained spatial 
configuration for rule 4. 
 
 When we apply this process to Figure 3., yielding Figure 6. 
 

 
Figure 6. 



The five coarse-graining rules that we use are 0001, 0010, 0011, 0110, and 0111.  
Rule 1111 and 0000 are uninteresting, because they map everything to a single value.  
The rules are 1-0 symmetry, because it doesn’t matter if we exchange all 1’s with all 0’s 
for evaluating the Shannon entropy.  Lastly, in the computation, I assumed left-right 
symmetry, which is not appropriate for rule 110.  For future work on this, I will extend 
the number of rules so that I am not assuming left-right symmetry. 

For each of the grids that we construct, we evaluate the approximate entropy rate 
for the spatial configuration.  The entropy rate is defined as  
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H(L) $H(L $1)    (eq. 1) 
 
where H(L) is the Shannon entropy of words of length L.  This is calculated by 
evaluating the probability of all words of length L, and plugging into the following 
equation. 
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H(L) represents the uncertainty in the which word you expect to read at length L.  If you 
have been reading the spatial configuration from right to left for a long time (or left to 
right, it doesn’t matter), the entropy rate tells you the uncertainty you have about the next 
number you read from the spatial configuration.  This is an interesting metric, because it 
is conceptually similar to thermodynamic entropy, which grows as the log of the 
available state space of the system.  If a system can only be measured as a single element 
of the state space, the uncertainty in the system grows the same as the log of the state 
space.  So, the entropy rate can be thought of as the thermodynamic entropy density 
(entropy-per-cell) of the system. 
 Because of limited data and time, we can only approximate the entropy rate as 
H(L)-H(L-1) for some L.  Because of the limited size of our lattice, the statistics of for 
generating our probability distribution won’t be very good past a certain L.  The highest 
value of L for which the graph of H(L) was still linear for all cases was L=5.  Thus, in 
this study we approximated entropy rate to be   
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hu " H(5) #H(4)  (eq. 3). 
We then plotted the entropy rate. 
 
 
 

Results: 
 
 When we coarse-grained our cellular automata, there was one change that was 
consistent among all the different cases.  When we plotted the entropy rate as a function 



of time, the variance of the entropy rate would be higher for the coarse-grained system 
than for the parent system, as illustrated by figure 7. 
 

 
Figure 7: The vertical axis is time entropy rate in both cases, and the horizontal axis is 
time. (left) rule 54 entropy rate curve.  (right) rule 54 coarse-grained with rule (0010). 
 
The increased variance is most likely because of the fact that when we coarse-grain our 
data, the length of the spatial configuration that we analyze shortens.  Thus, the word 
distribution we use becomes less exact, yielding more noise in the calculation of the 
evaluation of the entropy. 
 
However, when I compare the relative entropy rates of the systems, I average over ten 
time steps to eliminate the wrinkles, and make the graphs more readable.  Figures 8, 9, 
and 10 show the results for rules 22, 54, and 90. 
 

 
Figure 8: Rule 54.  The bold red line is the parent system. 



 
Figure 9: Rule 22. 
 
 

 
Figure 10: Rule 90 



 
In each case, the bold red line represents the entropy rate of the parent system, and each 
of the other colored lines represents the entropy rate of one of the five coarse-grainings.  
For rule 54, the entropy rate of the system appears to be decreasing.  For rule 90 and rule 
22, the entropy rate doesn’t appear to change appreciably over the time scale that we 
observe.  However, in all three cases, the coarse-grainings of each system appear to have 
relatively the same features as the parents system, with an overall shift in the entropy 
rate.  It seems that the coarse-grainings aren’t changing anything that our metrics can 
easily detect.  The behavior of rule 110 is shown in Figure 11. 

 
Figure 11: Rule 110. 
 
In this case, the coarse-grainings display behavior which is different from the parent 
system.  The parent system’s entropy rate is decreasing faster than it is for the coarse-
grainings.  This might imply that the systems being described by the coarse-grainings 
obey different rules than the parent system. 
 Rule 18 is the most interesting case of all five.  The entropy rate for rule 18 is 
shown in Figure 12. 



 
Figure 12: Rule 18. 
 
As you can see from the graph, the coarse-grainings express three different behaviors.  
Two of the course-grainings appears to be almost completely random, with the entropy 
rate being close to one.  The another coarse-graining appears to have almost no 
uncertainty, because the entropy rate appears to drop to zero.  Then, there are two coarse-
grainings (0010 and 0011) which look almost exactly like the parent system.  These two 
are actually very interesting, because, it turns out that they have a very large variance. 

  
Figure  13: Rule 18 coarse-graining 011. 
 



It appears that this variance has period 2, so I compare the system that exists at even 
time-steps to the system at odd time-steps.  Figure 14 shows the space-time diagram of a 
rule 18 cellular automata after being coarse-grained with rule 0011.  The cells that 
correspond to even time-steps are labeled by blue, and the cells that correspond to odd 
time-steps are labeled by orange. 
 

 
Figure 14. 
 
It looks like we have two distinct regions that are separated by a boundary, which have 
the potential to merge with other boundaries as you increase time.  This is very similar to 
the results which are described for rule 18 by Hanson and Crutchfield [3].  They found 
that spatial configurations of rule 18 can be divided into domains, which are invariant 
under the operation of rule 18.  This domain is given by the string …0A0A0A… which is 
alternating 0’s and A’s, where A represents a choice between 0 and 1.  This domain can 
be expressed with on the 0’s on either odd cells or the even cells corresponding to two 
different phases.  In places where domains of different phases meet, we have a particle to 



account for the phase difference.  These particles propagate forward in time, and can 
merge, but cannot spontaneously generate.  This description matches the picture above, 
where we can see the orange and blue regions as the odd or even domains of the cellular 
automata. 
 I should reiterate that in the even spatial configurations, we have two domains: 
one of blue and white cells, and one of entirely white cells.  We have a similar situation 
for the odd spatial configurations, except that instead of blue we have orange.  To 
understand why this is, recall that the coarse-graining rules that yield this behavior are 
0011 and 0010.  This means that the pairs 00 and 01 both get mapped to 0.  Because this 
course-graining rule takes every other pair of cells, it has an inherent phase, and therefore 
treats the strings 0A0A0A… and A0A0A0… differently.  Both 0011 and 0010 will map 
0A to 0 and A0 to A.  Thus when given 0A0A0A…, the coarse-graining will be 000…, 
and when given A0A0A0…, the coarse-graining will be AAA….  This implies that the 
observed regions of all white are really just regions of 0A0A… and the regions of blue 
(or orange) and white are really just regions of A0A0….  So, the blue and orange regions 
we observe in Figure 14 are the same as the domains that are apparent in the parent 
system.  The fact that blue domains are continuous with time and occur on the even time-
steps, while the orange domains occur on the odd time-steps implies that these domains 
oscillate between A0A0… and 0A0A…. periodically with time.  They just do so out of 
temporal phase, so they are always out of phase for any given spatial configuration.  
Thus, by viewing these course-grainings, are better able to visualize the functionality of 
rule 18, which is propagation particles separating two different types of domains. 

 
Conclusion and Future Work: 
 
 For most of the cellular automata that we consider, it is unclear whether coarse-
graining on this level yields different behavior.  However, coarse-graining rule 18 yielded 
very different behavior, which was revealing about the system.  It is unclear if this is 
something special about rule 18, or whether this is something special about the rules we 
are using to coarse-grain the cellular automata.  In either case I believe that this subject 
merits further work to better understand how systems will change when coarse-grained. 
 It’s possible that the coarse-grainings we used had an anomalous affect on rule 18.  
One of the greatest weaknesses of our coarse-graining is that by mapping from every 
other pair of elements to a single element we have introduced measurement device which 
is sensitive to the length two phase of the diagram.  It could be that these rules only 
interacted in an interesting way with rule 18, because the system had regions that had 
two-cell periodicity.  In order to resolve this problem, we might consider coarse-grainings 
that map from three or more cells to one.  However, if the system has domains with 
period three or more, we could have the same problems.  It would be ideal to find some 
sort of coarse-graining that doesn’t have any sort of phase choice inherent in its 
application. 
 Also, more work should be done to consider this coarse-graining from and 
information theory perspective.  It seems that part of what is interesting about coarse-
graining a system like this, is that we have the potential to either raise or lower the 



entropy rate, making a system appear more or less ordered.  In the case of a two-cell 
coarse-graining, this is based on the fact that if we have two variables X and Y, which 
have some uncertainty, and we have Z, which is a deterministic function of X and Y, then 
the uncertainty in Z can be both greater or less than the average of the uncertainty in X 
and Y.  For example, given H(X)=1 and H(Y)=0,  if we choose the coarse-graining 
function Z=Y, then H(Z)=0, which is less than the average of H(X) and H(Y), which is 
½.  If Z=X, then H(Z)=1, which is greater than the average.  In these cellular automata, 
the average entropy of X and Y is the average of the entropy of two adjacent cells in the 
parent system.  This average is related to the entropy rate of the parent system.  H(Z)  is 
conceptually similar to what the entropy rate should be for the coarse-grained system if Z 
is the value of a cell in that system.  It’s possible that we could learn more about how the 
entropy rate changes when you coarse-grain by considering this type of analysis. 
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