Course Graining Cellular Automata

Motivation

-When we observe a system, we are dependent on a measuring device.
-Measuring devices often neglect many details of the system, and we are left to try to understand the system from reduced data.
-How does course-graining a system affect the behavior of that system?
-Consider the simple model of 1D cellular automata.

Overview of 1-Dimensional CA

Start with a rule:
Rule 18:
$(000,001,010,011,100,101,110,111)$

$$
(0,1,0,0,1,0,0,0)
$$

Apply rule to current state (string of 1 's and 0 's).

Course Graining Over Two Cells

For each time step, take every two cells, and apply a transducer to get a string of half the length.

$$
(00,01,10,11)
$$

Transducer rule 4:

Translate each string:

$$
\begin{aligned}
& . .0101001011 \ldots \\
& \ldots 00010 . . \\
& \ldots 010
\end{aligned}
$$

The Rules

There are 16 possible transducer rules.
-Note 0000 and 1111 are uninteresting.
-Note that the entropy rate of systems are 1-0 symmetric.
-Assume that the systems are right-left symmetric.

This reduces the total number of rules to the following five:
(0001,0010,0011,0110,0111)

Apply to the Interesting Automata

A Metric: Entropy Rate

The entropy rate of the string at a given time is like the entropy of the system, because it tells us the uncertainty in the next bit.

Compare how the entropy rate evolves for a CA with how it evolves for a coursegraining of that CA.

Entropy Rate: First Impressions

Rule 54

Rule 54 Course-
Grained (0010)

-Decreasing with similar features.
-More noise for course-grained.

Rule 54

Rule 22

Rule 90

Rule 110

Rule 18

Rule 18 Course-Graining 0011

Rule 18 Course-Graining 0011

Rule 18 Course-Graining 0011 Evens

Rule 18 Course-Graining 0011 Odds

Moving Forward

-Why does rule 18 express different behavior when course-grained? (Is it a fluke?)
-What sort of course-grainings exist which don't impose an arbitrary segmentation of the lattice?

