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Abstract

The problem of locating coding regions in DNA sequences—de novo exon prediction—is an old open 
problem in theoretical biology. Finding a solution is still attractive, however, since accurate predictors 
could lead to rapid discovery of new genes. Many attempts at solving the problem have been made, but 
contradictory results and inaccurate classifiers have been the result. I conjecture that given real-world 
constraints, de novo exon prediction is impossible: no sequence-based model can fully capture the 
dynamic of the transcription process. As a simple experiment, I created models of exonic and intronic 
data; assuming the models were correct, the results would suggest that exons and introns contain 
equally noisy, random data. Such a conclusion we know is invalid; biological systems appear 
haphazard while we do not yet understand their complexity. Thus the appearance of “noise” more likely 
indicates faulty assumptions imposed by the model, or variation that the model cannot capture.



Introduction

Motivation

The genomes of many species have been sequenced, and as a result, biologists are drowning in data: 
the raw genomic data requires annotation. Annotating a genome (associating certain properties with 
regions of the DNA sequence) is a difficult process. Transcription factors might be located by 
identifying motifs (frequently-occurring patterns in the sequence); if we can sequence a known protein, 
the source coding regions in the DNA might be found; and so on. 

The more general problem of locating expressed coding regions, or exons, unsurprisingly remains 
open. In prokaryotes, the DNA sequence only contains exons. In fact, prokaryote DNA often has 
overlapping exons; the “code reuse” presumably helps with keeping the “code base” small enough to fit 
in the cell. In eukaryotes, the process of transcription is not performed in a straight shot. In the DNA 
sequence, exons may be fragmented, interspersed with introns (non-coding regions). During 
transcription, introns are spliced out of the RNA.

If we can locate exons in the sequence, and then confirm the presence of a transcribed and translated 
protein in the cell, we might be able to find new genes. Such a method could lead to incredible new 
advances in the biological sciences.

Punchline

Finding a solution for the exon prediction problem is attractive for many reasons. First, gene prediction 
could be sped up, or even automated. But second, the problem is highly complex, which makes it even 
more interesting. 

Many solutions have been attempted, but none fully capture the dynamic in the transcription process. I 
conjecture that by ignoring the nuance of the problem, exon prediction is impossible. I created simple 
models of good exonic and intronic data; assuming the models were correct, the results would suggest 
that exons and introns contain equally noisy, random data. As we know this is certainly not the case, the 
appearance of “noise” more likely indicates faulty assumptions imposed by the model, or variation that 
the model cannot capture.

Background

The Central Dogma of Molecular Biology (illustrated in Figure 1), in a nutshell, states that from the 
DNA, RNA is transcribed, and RNA is translated into protein. This process of course is extremely 
complicated, involving many specialized molecules. RNA polymerase must open the DNA, and then 
create the complementary strip of RNA. The RNA then must be transported through the nucleus 
membrane, and into the cell. From there, ribosomes latch onto the RNA, and translate it into protein 
with amino acids in the cell.



Figure 1: Above is an illustration of the Central Dogma of Molecular Biology. RNA is 
transcribed from DNA, and proteins are translated from the RNA [1].

From DNA sequence to protein, there are many subprocesses of great interest. Coding theorists 
consider translation as a decoding process; mutations are effectively decoding errors. Physicists model 
the action of RNA polymerase on strands of DNA; ripping apart the strand is a rather violent process, 
and deformations induced by stress can affect where the DNA might open up. The problem of de novo 
exon prediction (prediction based on the DNA sequence alone) is of course focused on the transcription 
process.

Many attempts have been made to solve this problem. Starting in the mid-1980s, information theorists 
tried to compare the “information content” of introns and exons, with conflicting conclusions. In [2], it 
was found that the coding and non-coding regions contained different amounts of information; in [3], 
the authors the opposite.

In the early 1990s, signal processing theorists interpreted the DNA sequence as a signal. [4] was the 
major result: it was found that there are long-term correlations found in very long sequences of DNA.

From the 1990s onward, computational biologists have tried using hidden Markov models (HMM) to 



predict exon locations, using roughly the same technique: a HMM is constructed from a training set, 
and its accuracy validated based on its performance on another dataset. While the developers of 
AUGUSTUS [5], GeneParser  [6], and others claimed reasonable accuracy, a review of popular models 
[7] found that the rate of successfully predicting the locations of exons was on the order of a (fair) coin 
toss.

Dynamical System

I am interested in the problem of exon prediction. By the Central Dogma of Molecular Biology, it is 
assumed that from DNA, RNA is transcribed. In eukaryotes, the RNA is encoded from exons in the 
DNA, while introns are spliced out.

Aside from the Central Dogma, there are no agreed-upon abstract models of the transcription process. 
Since we must first assume a model of the process, the attempts to find exons have varied greatly 
(along with their rates of accuracy). As a result, the “equations of motion” that describe the process are 
still theoretical, and the subject of much debate. I assume that the DNA sequence, along with 
environmental factors in the cell, determines the location of coding regions, but exact interations are 
unknown.

Conjecture

I conjecture that any computationally realistic model of the transcription process cannot accurately 
predict exons de novo. In theory, the DNA encodes every protein available in the cell, so there should 
be sufficient information in the raw sequence to locate exons. In practice, we do not have the 
computational resources to create a perfect HMM—not to mention the fact that completely annotated 
data would be necessary for its construction, thus rendering the exon prediction problem solved prior to 
the building of the model.

I expect that a feasible solution would have to incorporate information external to the sequence, such as 
environmental conditions in the nucleus, the physical stresses on strands, etc.

Methods

Knowing how many failing attempts existed, I hesitated to construct any model of the transcription 
process. The model reflects the assumptions made of the nature of the data; at worst, it imposes 
structure on the process that does not exist. I would like to learn as much as I can about the 
transcription process and proper modeling techniques, but since I had good data, I figured I might as 
well see what would happen.

My data was a subset of regions annotated in the ENCODE Pilot Project [8]. Over a multi-year period, 
biologists annotated particular regions of the human genome as best as possible. The end result was 
extremely good data available for theorists.

My dataset consisted of a subset of [9]. A rendering of the dataset and its annotations is shown in 
Figure 2.



Figure 2: Via the Ensembl Genome Browser, the (many) annotations 
of the test dataset are depicted as subintervals of a subsequence of 
Human Chromosome 11.



I had recently examined the algorithm used in NestedMICA [11], a motif-finding program. Rather than 
searching for possible matches to length-n motifs (which is NP-complete), the authors created a model 
of the sequence that did not contain motifs (the “uninteresting” parts). Thus if a motif was encountered 
in a sequence, it would be classified as not being “uninteresting,” and thus be identified as an 
“interesting” motif. I was impressed with the simplicity of such a clever approach, and implemented a 
similar technique when constructing the model. I first parsed the data, splicing out exons and introns, 
yielding two datasets: exonic and intronic.

For each dataset, I considered the raw sequence as a base-4 number, mapping nucleotides to binary 
numbers. I then constructed a depth-5 parse tree, ran the sequence through, and inferred an epsilon-
machine. 

The scripts used to automate retrieval of data were a mixture of Perl and Python. Perl is more 
frequently used in bioinformatics, but I have found Python the superior tool for scientific data analysis.

Results

The results were unsurprising. Both datasets generated epsilon-machines similar to a noisy fair coin 
process (see Figure 3).

Figure 3: On the left is the recovered epsilon machine of the exonic data, where 
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epsilon machine generated by the intronic data with, likewise, p≈
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For complexity measures, h=1 , E = 0, and C=0 . The crypticity of the process (given this 
model) is estimated at =0 .

Discussion

Some variation in the models was to be expected, but the “noise” is more likely indicative of 
underlying structure that is ignored. Since the construction of a HMM in some sense forces the data to 
hew to a simpler model, small but significant variations will appear as noise, but we know better than 
to assume that transcription behaves so predictably (or erratically, depending on the viewpoint).

Conclusion

The transcription process is extremely complicated, and still not fully understood. As a result, the exon 
prediction problem requires far more care than building classification schemes based on erroneous 
assumptions regarding the behavior of the process.
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Even from well-annotated data, a simple HMM cannot encode the nuance of the differences between 
exonic and intronic sequences. What appears to be noise in a fair coin-like process is more likely 
significant variation that cannot be captured by the model. Thus a better model is required before a 
classification scheme is even considered.

Exon prediction is an old problem, and finding a solution—even rudimentary—would greatly help 
advance the field of biology. Its difficulty, and the need for a cautious approach, has been noted for 
over twenty years [12, 13]. But its complexity is the source of its attraction, and I hope to study the 
problem further.
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