
Dynamics and Unpredictability
of Load Balancing

Gregory Robinson
Department of Physics

University of California, Davis

garobinson@ucdavis.edu

June 12, 2010

Abstract

Load balancing, the dynamic redirection or reallocation of comput-
ing resources, has become prevalent in critical services in recent years.
It is used in virtually all large real-time computing environments from
logistics to military intelligence to stock exchanges. Algorithms used
are often contrived and implemented without any consideration of
what possible behaviors they can induce, nor what unpredictability
they inherently exhibit. By simulating a very simple reallocation load
balancing algorithm, this project examines some types of behavior
that can occur. Findings indicate that the simple model used here
is entirely predictable (hµ = 0) unless time delays between instruc-
tion and allocation are stochastic. With these stochastic delays, the
system may become chaotic but retains short-term periodic structure.
Additionally, we find that gradual relaxation to equilibrium is favor-
able over periodic and chaotic behavior as measured by both aggregate
latency and reallocation overhead.

1



1 Introduction

1.1 Motivation

The advent of distributed computing brought with it significant challenges.
Not least of these is the necessity to dynamically adjust which resources are
used by various components of a distributed service. Engineers implementing
load balancing on their clusters often neglect to carefully analyze the conse-
quences of the algorithm and parameters they choose. Ignoring such analysis
could lead to problems of varying degree. One such problem is inability to
explain why a system is behaving in some undesirable way, thereby increas-
ing the time required to alleviate that behavior. Even worse, load balancing
algorithms can go haywire, disabling the system they intend to improve.

1.2 Summary of Project and Results

My report intends to illuminate the complicated nature of even simple load
balancing algorithms. I examine what kinds of strange behaviors can occur,
how to make sense of real-time load data, and the tradeoff between overhead
and responsiveness for chaotic systems.

This exploration begins with a toy model of a discrete-time dynamic that
instantaneously moves processing jobs from overloaded clusters to under-
loaded clusters. This system equilibrates regardless of initial conditions and
the rate at which reallocation occurs. A slightly more realistic model reallo-
cates jobs in a fixed number of timesteps. This small complication leads to
periodic behavior for some initial conditions and parameters, and equilibrates
for others. Yet another refinement of the toy model is stochastic reallocation
timescale, which gives rise to chaos. Performance of the algorithm is approx-
imated by two measures: additional time incurred as a result of overloaded
clusters, and overhead incurred due to reallocating resources. Both measures
favor gradual relaxation to equilibrium over both chaos and limit cycles.

1.3 Zooming Out

Studying the characteristics of load balancing is both interesting and appli-
cable, but the implications are broader than just computation. I am eager
to learn more about how non-instantaneous dynamics can complicate more
realistic physical systems. Propagation time very well may be crucial to un-

2



derstanding, for example, the complicated behavior of relativistic N-body
systems and neural networks [1, 2].

2 Background

2.1 Distributed Computing

Distributed computing is an umbrella term used to describe the method of
splitting independent pieces of a computational application into pieces and
distributing them across many computers. This distributed application could
be protein folding, searching for extraterrestrial life, indexing the internet,
or inferring transition probabilites for a very complicated epsilon machine.
(The latter case will keep me busy for a few weeks this summer to further
investigate this project.) Distributing an application increases its speed by
increasing available resources such as CPUs, memory, hard disk, and network
capacity.

The collection of computers performing the work is called a grid. Very
large grids are often partitioned into clusters. Each cluster may contain
hundreds to hundreds of thousands of individual hosts [3]. There may even
be clusters of clusters, but this project need not be concerned with that.

2.2 Load Balancing

Distributed applications typically require careful design to maximize their
utilization the vast resources at their disposal. One method of doing so is
called load balancing. This denotes any scheme of rearranging the load put
on each host or, more macroscopically, on each cluster.

One method of load balancing involves redirecting requests sent to an
overloaded cluster toward an underloaded cluster. Another method, more
typical of applications with significant interdependence between hosts, in-
volves dynamically allocating more of a resource as it is necessary. (I have
heard contention that this abuses the term, but it is a common misuse if so.)
More interesting strategies can Rube Goldberg machines implemented with
tens of thousands of lines of code and hundreds of both fixed and dynamic
parameters.

Perhaps the simplest method is “round-robin” load balancing, which redi-
rects client requests to alternating nodes in a cluster [4]. This paper will focus

3



on the latter case, which is both more realistic for complicated services and
more interesting.

3 System Under Investigation

In the spirit of computer engineers’ casual approach to load balancing, I
designed the model completely in the dark. I started with a description of
what kind of load balancing is necessary and a list of assumptions I was
willing to make.

3.1 Constraints, Assumptions, and Approximations

This project specializes on local resource balancing. Network resources should
not be ignored, but it is still useful to see how each kind of load balancing
works individually.

This project assumes that:

• The grid comprises large clusters with many hosts and many instances
of a highly parallel service.

• Because clusters are “large”, the load associated with a single instance
(i.e., on a single host) of a service is small compared to total utilization.

• As a consequence of each instance being small compared to the cluster,
utilization of each node takes approximately real values.

• The dynamic is conservative. It neither creates nor kills any jobs, and
can only move them.

• The dynamic “ignores” clusters loaded within some optimal range.
(Doesn’t fix what is not broken.)

• The total load on the grid is constant.

• Resources available to the service are constant.

• Available resources are uniform between clusters.

4



3.2 The Toy Model

A good place to start is partitioning each cluster’s load li ∈ L into the
discrete alphabet imposed by the three regions: underloaded, optimal, and
overloaded. For brevity, the letters A, B, and C will denote these regions,
respectively. Two parameters mark off these regions: Υ, the threshold below
which a cluster is considered underloaded, and Ω, the threshold above which
a cluster is considered overloaded. These regions form a parition [5]:

P = {Pi} = {A,B,C} (1)

M = ∪Pi (2)

Pi ∩ Pi = ∅, i 6= j (3)

The partition of each cluster’s load is roughly what might be displayed
on a service dashboard, so these are good candidates for the measurement
symbols.

By constraint, optimally loaded clusters play no role in load balancing; all
balancing takes place between overloaded and underloaded clusters. This is
not really a good approximation for a sensible balancing method, but roughly
emulates the equivalent “feature” often found in load balancing algorithms
without undue complication.

I chose to relieve overloaded clusters proportionally to the difference be-
tween their load and the midpoint of the optimal region. In a similar way,
the dynamic adds load to underloaded clusters proportionally to the differ-
ence between their load and the same midpoint. The rate at which laod is
removed from overloaded clusters is parameterized by γ ∈ (0, 1]. The result-
ing equations for reallocation, after being careful about making the dynamic
conservative, are

ωi = γ

(
li −

1

2
(Υ + Ω)

)
H (li − Ω) (4)

υi =
1
2

(Υ + Ω)− li
Ω

H (Υ− li)
∑
j

ωj (5)

where H is the unit step function, ω is the amount to remove from an over-
loaded cluster, and υ is the amount to add to an underloaded cluster.

Initially, I intended to study this system without any delay between the
time at which the grid master decides to move instances and when those

5



instances allocate on the target cluster. This proved uninteresting, as the
system thermalizes rapidly for all parameter values. I therefore refined the
system by adding fixed time delays, and still later stochastic time delays. It
would be wise to investigate further refinements of the stochastic time-delay
model in the future. For example, the probability distribution of time delays
should have some nonuniform shape that is skewed according to present load
and size of the new allocation.

To make time delays feasible, a locking mechanism is necessary. Any
instruction to reallocate jobs locks the relevant clusters until the instruction
takes place. In the simulation used here, locking is implemented as a mask
array of zeros and ones that effectively removes all locked clusters from any
consideration in the balancing dynamic.

4 Methods

The entreé of this research is a simple Python application that implements
the simplified algorithm above.

It is not easy to judge how favorable a load balancing algorithm is work-
ing without some meaningful measure of its performance. Two important
measures are additional latency incurred due to clusters being overloaded
and the cost of load balancing. Each of these measure very different aspects
of the system, so there is no way to compare them in general. For this reason,
I examined results of each separately.

Additional latency is a result of scheduling overhead and similar superlin-
ear functions of load. This can be very crudely approximated as the square
of the difference between an overloaded cluster’s load and the optimal load
of that cluster. The simple justification for this is that if one process takes
1 cpu second to complete, and there are two instances running on the same
processor, the average time to complete would be two seconds. In general,
the average time to complete each of N identical tasks that require T cpu
seconds on a single processor is given by < T̃ >= TN . Since there are N
processes, the total latency these tasks incur on a single processor compared
to each running on a dedicated processor is TN2 − TN . The approximate
overtime is then given by

overtime per iteration =
∑

i∈clusters

(
li −

1

2
(Υ + Ω)

)2

H (li − Ω) (6)

6



Overhead is much easier to measure. Here we will simply assume that
overhead is a linear function of the sum of the load moved at each step. This
allows us to write:

cost per iteration =
∑

i∈clusters

ωi (7)

=
∑

i∈clusters

γ

(
li −

1

2
(Υ + Ω)

)
H (li − Ω) (8)

To sample the performance for various parameters, a Monte Carlo sampler
randomly generates initial states with each cluster loaded up to five times
optimal capacity for various values of γ. This sampler tries 100 equidistant
values of γ ∈ (0, 1] and picks 10,000 random initial states for each. Each
simulation runs for 10,000 iterations, after which the performance measures
are averaged over all initial states and iterations thereof.

I attempted to use both state splitting and tree merging inference to
this system in an attempt to find the mutual information between past and
future measurement symbols. Regrettably, this has not been successful. It is
computationally difficult to do this by brute force, and I have not yet been
able to implement a more cunning method. In the coming months I will
attempt to write a search algorithm that will sample the space of L-cylinder
induced by the partition. That is, the algorithm will sample the underlying
state space for each possible initial measurement symbol (all 3N of them!) to
estimate the probability distribution of future words.

Part of the reason it is so tricky to understand this system analytically is
the inherent cross-dependence on each component of the load vector. There
might be a way to write the equations in a more elegant manner, but that is
also proving to be difficult.

5 Results

• Instantaneous dynamic equilibriates system quickly.

• Fixed-interval delay leads to either equilibrium or periodic orbits.

• Stochastic delays sometimes results in chaos.

• Slow migration rate (i.e. small λ) performs better than periodic and
chaotic regions.

7



Figure 1: Performance Measures vs. Migration Rate

• When N ≥ 4, uncoupled periodic orbits may exist due to staggered
locking.

The most useful result I have found is that there is zero unpredictability
in this system if time delays are fixed. The reason for its utility is mosty
that sources of unpredictability of load balanced clusters is mostly unknown.
This result narrows down the possibilities, and might be useful in designing
more predictable algorithms.

Another interesting result is the trend of performance versus migration
rate. As exemplified in Figure 1, it is counterintuitively harmful for the load
balancer to be overzealous in moving jobs to underloaded clusters. This plot
shows the average of 10,000 iterations of 10,000 initial data points for each
of 100 values of γ with a grid of 10 clusters. It shows that the algorithm is
fairly well-behaved until performance starts to severely degrade for γ larger
than approximately 0.5. No evidence has been found in support of instability

8



being advantageous in any way, supporting hypothesis.
The way this system becomes chaotic is rather curious. Unpredictability

is a result of hopping between multiple periodic orbits of different length. In
this way, there is very much a local structure in the symbol sequences — and
even the hidden state inside the black box — but the long-term behavior is
largely unknown.

6 Conclusion

Even a simple load balancing scheme can impose uncertainty and undesir-
able behavior onto a distributed application. The most significant takeaway
is that even algorithms that are stable if their dynamic takes effect instanta-
neously may behave erratically in practice. This should serve as warning that
these algorithms should be thoroughly investigated before deploying them.
We have seen that there is uncertainty in future states given the present
state. The chaotic behavior causing this uncertainty desrves more attention:
it arises from the interleaving of periodic orbits.

This project has given me far more questions than answers. Despite
constantly hearing the mantra that research is never complete, this feels
especially incomplete. I still do not know much about this system, and I
haven’t even been able to calculate mutual information between past and
future, which was one of my primary goals. Future research will include a
selective sampling (as described in 4) to find this mutual information, better
description of what conditions lead to chaos and why.

References

[1] Moser, Jurgen. Stable and random motions in dynamical systems. Prince-
ton: Princeton University Press, 2001.

[2] Abbot, L.F. Decoding Neuronal Firing And Modeling Neural Networks.
Quart. Rev. Biophys. 27:291-331. 1994.

[3] Top 500 Supercomputer Sites. Available from http://www.top500.org/.
Internet; accessed 10 June 2010.

[4] IBM. ”Understanding IBM HTTP Server plug-in Load Balanc-
ing in a clustered environment.” Available from http://www-

9



01.ibm.com/support/docview.wss?rs=180&uid=swg21219567. Internet;
accessed 09 June 2010.

[5] Crutchfield, James. Natural Computation and Self Organization Lecture
15. 4 March 2010.

10


