

Intrinsic Computation in Nanoscale Arrays:

Spatiotemporal Considerations for the Computational Mechanics of

Bistable Nonlinear Elements with Nearest Neighbor Coupling

PAUL RIECHERS

Department of Electrical and Computer Engineering
University of California at Davis,

Davis, CA 95616
pmriechers@ucdavis.edu

This project aims to develop useful theoretical and computational tools for the
discovery and analysis of information processing rules that emerge from the
nonlinear interaction of simple spatially extended bistable elements with nearest-
neighbor coupling. Although I have developed this project with nanoelectronic
components in mind, I have tried to create a more general framework to understand
how computational mechanics can be applied to simple processes with
spatiotemporal extent. Several example systems, including some elementary
cellular automata (CA), are discussed for concreteness.

Introduction

 This paper summarizes my initial efforts to formulate a systematic approach to
discover the intrinsic computational abilities of simple arrangements of interacting
bistable elements in a physical nanoelectronic array. Possible components of
interest, like capacitively coupled single-electron tunneling junctions or exchange-
coupled superparamagnetic nanoparticles would have a very simple physical
structure as well as a very simple coupling mechanism. Since the underlying
dynamics are also rather simple, the computational power of such a system depends
on the rules of information processing that emerge from the nonlinear collaboration
among the cells in the array. However, there is currently no straightforward way to
engineer such collaboration.
 The section on Continuous Dynamical Computing in Appendix H of Ref. [2]
suggests that computational mechanics is an appropriate tool for a more systematic
study of the attainable behavior in such arrays. Specifically, computational
mechanics can detect what a system is intrinsically computing. At least for a small
functional subset, or supercell, of an array, the interpretation of function might be
tractable.
 After giving a background on a few of the dynamical systems that can be
addressed with the spatiotemporal computational-mechanical analysis developed in
this project, I will discuss a selection of methods and results. Most of the methods
have been an inspired combination of concepts from information theory [11] and
computational mechanics [2]. Although some work has successfully used
computation mechanics to discover structure in spatially extended systems (see e.g.
Ref. [6],[7]), some of the methods seem unnatural since they were adapted from
time series analysis, and a clear theoretical foundation is still needed to advance
this promising application of computational mechanics.
 I have approached the challenge of spatiotemporal generalization in several
steps. First, I show how strictly-spatial information should be described, and how
we can visualize its evolution in time. Next, I consider the evolution of strictly-
temporal information about structure, more as a time series analysis. Finally, I
discuss some preliminary thoughts and results regarding the structure of
information in a process’ evolving spacetime probability distribution. Although I
have not yet come up with a completely cohesive framework, I have tried to show
why my approach is appropriate for finding structure in spatiotemporal processes,
and have tried to discuss many remaining items of inconsistency.

Background of Relevant Dynamical Systems

 Although a wide variety of physical mechanisms with rich continuous
dynamics can mediate the interaction among components in nanoscale arrays, we
can often discretize these systems in meaningful ways to define a finite-state,

discrete-time process. Specifically, many systems of interest can be abstracted to a
set of bistable elements with nearest-neighbor coupling. Furthermore, if
oscillations have a characteristic time scale (and possibly even synchronize or occur
in short time windows), the process has a natural discrete time step. In such cases,
initially disparate physical processes can be partitioned in a meaningfully similar
way. Through this partitioning, these different systems become amenable to a
common set of analysis and design tools, while they maintain the intrinsic
computational power of their unique continuous dynamic.
 There are many examples of systems, from theoretical to physical to electrical,
that fall under the proposed common framework. Simple and well-studied systems
with spatially extended bistable elements include Cellular Automata (CA) and Ising
spin lattices. Standard CNN1 allows for more complicated neighboring interactions,
but is still implemented through uniform coupling in the sense that each cell uses
the same template that defines the rule for interaction [3]. A truly nanoscale array
could use Coulomb blockade to create bistable single-electron tunneling phase
states in small capacitively coupled electrical junctions, as in TPL-CNN.
Alternatively, a gated RKKY interaction is being investigated to couple bistable
macrospins in an array of superparamagnetic nanoparticles.
 Elementary CA consists of a uniform spatial arrangement of indistinguishable
automata all following the same rule carried out in discrete time steps. Despite the
system’s simple description, several rules yield beautifully complex spatiotemporal
patterns, and are even capable of universal computation [4].
 While CA was not created to model a particular physical phenomenon, the
Ising spin lattice was originally presented as a simple model for a uniform spatial
arrangement of electron spins that can either align or anti-align with an external
magnetic field at finite temperature. Besides the energetic motivation to align with
the external field, the antisymmetric requirement of overlapping fermion
wavefunctions couples neighboring electrons with an exchange energy term.
Although highly simplified, this model of a spin system is still able to show phase
transitions at critical temperatures in two-dimensions.
 CNN is spatially discrete but computes continuously in time. It has been used
for a variety of practical applications, the most common of which is dynamic image
processing, and perhaps one of the more unexpected is elementary particle
detection.
 The quantum mechanical processes of single-electron tunneling and RKKY
exchange interaction are both imagined to be implemented in arrays that are nearly
spatially discrete. Although the interactions are continuous in time, tunneling
events and spin flips can generally be considered discrete time events, since the
time scale of the transition is so much shorter than the time between events.
 As the following one-dimensional TPL-CNN spacetime diagrams suggest, one-

1 CNN is an evolving acronym that has at different times stood for Cellular Neural Networks,
Cellular Nonlinear Networks, and Cellular Nanoscale Networks. Despite the most recent name,
commercially available CNN processors are implemented through an elaborate CMOS structure
that is far from nanoscale implementation.

dimensional single-electron tunneling is capable of producing behavior that could be
captured by fairly simple rules:

The first few rows of the spacetime diagram show the transient information
processing on a vector of random initial conditions, performed by a row of single-
electron tunneling junctions with uniform capacitive coupling and a uniform bias
voltage distribution. The uniform capacitive coupling and uniform bias distribution
assure that each of the tunneling junctions implements the same intrinsic
symmetric rule2. Additionally, the uniform voltage bias has been chosen to keep
each cell in the bistable mode. Figure 2 shows another example of a TPL CNN
spacetime diagram, this time using a graded coupling scheme to implement an
asymmetric rule:

2 Actually, without circular boundary conditions this is not quite accurate. The boundaries have
only one nearest neighbor, instead of the normal two, causing slightly different dynamics or
rules. This difference propagates through the one-dimensional array like a reflection in a cavity.
If we wanted to get a pure rule, we would need an infinitely long array, or an array with circular
boundary conditions. However, simulations show that spacetime diagrams from longer arrays
under the same voltage bias display similar patterns to that seen in Figure 1. The different
behavior at these boundaries is the first hint that boundaries could be useful to enrich the type of
information processing from a simple process like single-electron tunneling.

1-D TPL-CNN spacetime diagram with
uniform bistable bias, uniform coupling,
and random initial conditions. The
horizontal axis represents the spatial
dimension. Time increases as you go
down the diagram. The first row,
below, is the first time step. On the
right, we see that the one-dimensional
array settles down to a periodic
‘decision’ representing a computation
on the initial conditions.

The above time series shows the actual
dynamics of the tunneling phase in the
first cell of the array, and shows how the
period of the tunneling event determines
the binary output.

Figure 1

Figure 3 shows an example of exotic boundary conditions—a double-chamber
supercell with a single-slit coupling—significantly contributing to the function of
the two-dimensional array. This figure exemplifies the importance of boundary
conditions in the information processing in a physical array. Boundary conditions
can actually perform a computation, so we cannot always ignore them, or assume
circular boundary conditions as is usually done for CA analysis. I will be guilty of
using circular boundary conditions for CA later in this paper, but I will also make
some comments about possible ways to account for boundary conditions in
computational mechanics analysis, where there presence is important.

Figure 3
Evolution of phase states in a two-chamber system
coupled by a single slit. Gray represents cells that have
been removed from the two-dimensional array. Blue and
yellow represent binary phase states. The array was
initially excited by a small square of nine cells in the left
half of the bottom chamber that started in a different
phase state than the rest of the array. Besides being a
clear example of the importance of boundary conditions,
the setup could be interpreted as a single slit experiment
for the propagation and interference of nonlinear waves.

1-D bistable TPL-CNN with graded coupling-
capacitance. Unlike the previous spacetime
diagrams with uniform coupling, we can see
both sides of branching spacetime trees carried
to the left over time in this diagram. The first
panel shows the initial transient behavior from
random initial conditions. Subsequent panels
represent chunks of time further in the future.

Methods and Results

Spatial Block Entropies

 The block entropy for a length-L word is given by:

!

H(L) = H(P(sL)) = " P(sL)log2 P(s
L)

s
L #A

$, where

!

s
L

= s
ii=1

L

U .

However, the correct interpretation of the above equation for spatially extended
system is not immediately obvious, and in fact requires careful consideration. Most
fundamentally, what is L? What constitutes a word in spatially extended systems?
What is the size of the corresponding alphabet? What if time is involved?
Conversely, what if we are interested in purely spatial properties and want to
ignore time?
 I propose that a word of length L should represent a measurement from the system that
includes L layers of causal information. In different spacetime dimensions the shape of
the onion of influence might change, but the following formalism, experimentation,
and results represents the consequences of adhering to this assumption.

The Strictly Spatial Onion

 When first considering the above questions, it is important to note that
different geometric spaces induce different types of alphabets. Specifically, the type
of coupling between neighbors determines the geometry of the causal onion, and
thus the appropriate norm to map from the physical lattice to L-space. For
example, as shown in Figure 4, cells in a two dimensional array with four nearest
neighbors induces a taxicab geometry, which uses the L1 norm,

!

|| x ||
1

" | x
i
|

i=1

D

(which is

!

| xLx |+ | xLy | for the D = 2 strictly spatial case), with

discrete lattice points, such that the L from the block entropy becomes

!

L =1+ || x ||
1
.

The extra ‘1’ is due to the causal layer of self-influence. Alternatively, we would
expect that an inter-component interaction mediated through vacuum would make
L-space exactly coincide with real-space. In such cases (for example,
communication via electromagnetic radiation through vacuum) our L-space would
use the more familiar L2, or Euclidean, norm. As a final example, an array of cells
with eight nearest neighbors, in either two or three dimensions maps to L-space
through the maximum, or Chebyshev, norm, L∞, such that

!

|| x ||" # max{| x1 |,...,| xD |} (which is

!

max{| xLx |,| xLy |} for the D = 2, strictly-spatial
case). It is interesting to make the analogy that the taxicab geometry relates to a
simple cubic lattice, whereas the eight nearest neighbor case relates to a body
centered cubic lattice. A D-dimensional lattice with coupling through the face of the
D-dimensional cube induces an L1 norm, while coupling through the corners of the
D-cube requires the L∞ norm. In one-dimension, all of the Lp norms are equivalent,
so it is good that we have worked out the correct framework in higher dimensions.
 Let us now relate our L-space observations back to the interpretation of block
entropy:

!

H(L) = H(P(sL)) = " P(sL)log2 P(s
L)

s
L #A

$, where

!

s
L

= s
ii=1

L

U

The strictly spatial sphere of influence for an array with n internal states per cell, D

 Figure 4

 (a) L = 1 (b) L = 2 (c) L = 3
The above length-L templates show how real-space maps to L-space for a 2-D array of elements (contained by the
grid) with four nearest neighbors. Each of these L-templates can be scanned across the entire array to find the
corresponding P(sL) of the block-entropy equation in the spatial-only regime.

spatial dimensions, and L1-norm coupling has

!

s
1
" {0

L=1,1L=1}, but

!

s
2
" {0

L= 2,1L= 2,2L= 2,...,(2
4
#1)

L= 2}. The subscript on the letters is a reminder that the
meaning of each symbol is unique. For example, a ‘0’ in the set A(L=1) is different
than the meaning of a ‘0’ in the set A(L=2). In general the size of the alphabet
(which is really more of a vocabulary) for length-L words is

!

length{A(L
L
1"coupling

)} = n
(# k,0 +2D k (D"1)){ }

k= 0

L"1

$,

at least in one and two dimensions, although I believe my formula is more general.
The NC nearest neighbors are included implicitly in this formula since NC = 2D for
L1-norm coupling. Similarly, for a D-dimensional array with n internal states per
cell and L∞-norm coupling,

!

s
1
" {0,1}, but

!

s
2
" {0,1,2,...,2

8
#1} , and in general,

!

length{A(L
L
" #coupling

)} = n
($ k,0 +(2k+1)D #|2k#1|D){ }

k= 0

L#1

% ,

at least in one through three dimensions. The NC nearest neighbors are included
implicitly in this formula since NC = 3D – 1, for L∞-norm coupling.
 To further our discussion, we will define the neighborhood population ξ, at a
particular L for any array as the number of cells enclosed in a volume of radius L.
For a particular array, we should be able to define some relationship ξ(L), although
ξ need not be linear in L. This relationship is further complicated by boundary
conditions, which we will consider in more detail in another section. For now, let us
assume that the relationship ξ(L) is known. Since there is a finite number of cells,
ξmax, in any physical array, we consider Lmax to be the smallest L such that ξ(L) =
ξmax:

!

Lmax "min L # $(L) = $max{ }

In terms of the neighborhood population, we can reformulate the alphabet length
more generally as:

!

length{A(L)} = n
(" (k)#" (k#1)){ }

k=1

L

$ = n
" (k)
n
#" (k#1){ }

k=1

L

$ = n" (L).

 To really understand the meaning and effect of probabilities in the block
entropy, we should compare the number of possible L-words with the actual number
of L-words that will be expressed at a given time for any finite (i.e. physically real)
array. A truly random set of events with infinitely many words has an entropy
equal to the log of the length-L alphabet:

!

Hideally"random (L) = " P(sL)log2 P(s
L)

s
L #A

$ = log2(length{A(L)}) = %(L)log2(n)

However, a physical system with only ξmax expressible variables has quantized
probabilities: the minimum nonzero probability expressible by the system at any
one time is

!

"P =1/#
max

. Also, for any L, the number of L-words expressed at a given
time will equal the number of cells in the array, ξmax. So the closest that a finite
physical system comes to a random configuration of L discrete variables is
approximately described by the entropy:

!

Hphysically"random (L) #min log2(length{A(L)}),log2($max){ } =min $(L)log2(n), log2($max){ }

although this is not quite correct since ξmax is not in general divisible by
length{A(L)}, so that for small ξmax, this approximation will be poor when
length{A(L)} < ξmax.
 Now, we consider the reciprocal perspective on randomness to show that our
quantized probabilities not only limit randomness, but also make non-random
processes produce configurations that appear as random as possible when the
would-have-been predictable structure has spatial frequency comparable to the
lattice size. We see that a configuration of ξmax cells has a maximum block-entropy,
the saturation entropy:

!

H
sat

= log2("max)

independent of L, for all L such that ξ(L)log2(n) > log2(ξmax).
 Aware of the features of finite probability resolution in a strictly-spatial
system, we are now in a position to consider functions of H(L). Although we will
revisit the utility of these formulations, the typical entropy rate for finite L, which
we will call the effective entropy rate at L, can still be defined as

hµ(L) ≡ H(L) – H(L-1)

and the excess entropy for finite L, which we will call the effective excess entropy at
L, can be defined as

E(L) ≡

!

hµ (" L) # hµ (L){ }
" L =1

L

$.

However, we can rewrite E(L) as

E(L) =

!

"Lhµ (L) + hµ (# L){ }
L =1

L

$ =

!

"Lhµ (L) + H(# L) "H(# L "1){ }
L =1

L

$,

where

!

H(" L) #H(" L #1){ }
" L =1

L

$ = [H(1) #H(0)]+ [H(2) #H(1)]+ ...+ [H(L) #H(L #1)]= H(L)

So,

E(L) =

!

H(L) " Lhµ (L).

However, for any physical array, the maximum entropy of a spatial configuration,
Hsat, (severely?) bounds the global entropy rate

hµ ≡ hµ(Lmax)

and imposes a limit on the global excess entropy

E ≡ E(Lmax).

We start considering these constraints with the simple y = mx + b of the block
entropy diagram by rearranging and substituting the three equations above:

H(Lmax) = Lmax hµ(Lmax) + E(Lmax) = Lmax hµ + E ≤ Hsat

Since E and hµ are assumed to be nonnegative, we have the weaker constraints that

E ≤

!

H
sat

= log2("max)

and

!

hµ "
H

sat

Lmax

=
log2(#max)

Lmax (#max)

The constraint on entropy rate here is very interesting, since the dimension and
coupling of the physical array primarily determines the relationship between Lmax
and ξmax . This very general result is thus roughly a statement about how the
entropy rate of physical configurations scale with physical dimension. The result is
especially insightful if we consider the limit of the number of array elements, ξmax →
∞.
 For one-dimensional systems, Lmax(ξmax) ∝ ξmax, so

!

lim
" max #$

hµ,D=1() %
lim

" max#$

log2("max)

Lmax ("max)

&
'
(

)
*
+

=
lim

" max#$

log2("max)

c1"max + c2

&
'
(

)
*
+

= 0

So, for a one-dimensional system, hµ quickly tends to zero with increasing array
size. This result might be related to the nonexistence of phase transitions in most
one-dimensional systems.
 In contrast, Lmax(ξmax) ∝ ξmax½ for two-dimensional systems, and

Lmax(ξmax) ∝ ξmax1/D

for a D-dimensional spatial configuration. For example, for a two-dimensional mxm
array, ξmax = mxm = m2, but Lmax = 2m for L1 coupling while Lmax = m or L∞ coupling.
Either way, ξmax ∝ Lmax2 → Lmax(ξmax) ∝ ξmax½ for the two-dimensional array. More
generally, for an array of D physical dimensions,

!

lim
" max #$

hµ() %
lim

" max #$

log2("max)

Lmax ("max)

&
'
(

)
*
+

=
lim

" max #$

log2("max)

c1"max
1/D

+ c2

&
'
(

)
*
+

= 0

so entropy rates of strictly-spatial configurations tend to zero as ξmax → ∞ in all
dimensions, although the scaling rate of the inequality differ.
 In contention with these results, one might argue that we must average over
the spatial configuration of the array at different times to attain the true
probability distribution. It seems that once we introduce probability measurements
in time, we can beat our original probability resolution of

!

"P =1/# . After some
integer number of discrete time measurements has elapsed, the probability
resolution for our configuration is now

!

"P = 1
#
max
"t

. However, in a time dependent
process, there has also been a far greater increase in time dependent probabilities,
so we are really just embedding our problems in a new level of sophistication.
Additionally, we are finding a probability distribution to a different question
(although it is a question that we are likely interested in). Yet, if we continually
recreate the initial conditions of interest, we can begin to assimilate the correct
time-dependent probability distribution, similar to the method of spike-triggered
averaging in neuroscience [10]. The point is that for a deterministic system, the
current configuration of the array is the correct probability distribution for L-blocks
in the configuration, and the corresponding strictly-spatial block entropies lead to
an entropy rate of the configuration that vanishes with increasing array size. In
fact, the only way to have a finite entropy rate is to have a finite array.
 While the global entropy measures may have limited utility, the effective
entropy measures for a configuration of states in a physical array could actually be
extremely insightful. Persistent effective entropy rates and effective excess
entropies can describe the various types of patterns and computations interacting at
different length scales.
 We will see just a glimpse of the utility of viewing the time evolution of
effective entropy rates and effective excess entropies for strictly-spatial
configurations in the following section.

Time Evolution of the Strictly Spatial Onion

 In this section, we will investigate how a one-dimensional elementary cellular
automata (CA) evolves in time. Specifically, we will focus our examples on
universal rule 110. However, we will also mention a few other example systems for

contrast.
 For a one-dimensional system of bistable elements with nearest neighbor
coupling, the alphabet size at a given integer L > 0 is

!

length{A(L)}bistable,NN"coupling = 2 2
2
1
k
0

{ }
k=1

L"1

= 2 22(L"1)() = 22L"1

from the above definition. Because the array is one-dimensional (with circular
boundary conditions), 2Lmax – 1 = ξmax, so

Lmax = (ξmax + 1) / 2

The maximum global entropy rate for the configuration at any one time is thus
bounded by

!

hµ "
log2(#max)

Lmax (#max)
=
2log2(#max)

(#max +1)

while the global excess entropy is bounded by

E ≤

!

log2("max).

These global limitations will be apparent in the examples, but our interest will most
likely yield to the time evolution of the effective entropy rates and effective excess
entropy as the underlying dynamics generating the spatial configuration give
different structure at different scales.

 (a)

(b)

Figure 5

 Figure 5 shows the evolution of strictly-spatial block entropies and entropy
rates from random initial conditions for elementary CA rule
110.

(a)

(b)

Figure 6
 Figure 6 shows the evolution of strictly-spatial block entropies and entropy
rates from random initial conditions for elementary CA rule 110. The saturation L
decreases and again increasing after t ≈ nSites = 206. We are really just watching
the process become disordered (until about t =50) as apparent in Figure 7, and then
finally settling down to the H(L) plot characteristic of CA 110.

(a) (b)

Figure 7
Above: A 206-site Rule 110 spacetime excerpts for (a) the beginning of the evolution

and then (b) up to t = 2000, corresponding to Figures 5 and 6

How do we know that this curve (Figure 6, at ~t = 10000) is characteristic of 110?
Figure 5 and Figure 7 can be used to argue heuristically. The first shows that we
approach approximately the same line from random ICs. The second shows that we
approach the same line even for a much larger (and thus more trustworthy) number
of cells. The similarity of the steady state H(L) curves in Figures 5, 6, and 7 (at
least in the range of L ≤ 40) suggests that this H(L) line is really a distinct feature
of Rule 110.

(a)

(b)

Figure 7

Random initial conditions in Figure 7 give hµ = 0 bits/layer and E = log2(6006) =
12.55 bits. hµ is related to the unpredictability, or information gain, in the system:
apparently the entire configuration could be reconstructed from the probabilities
given up to Lsat. E = log2(6006) bits suggests that the configuration is fully utilizing

its available memory: essentially it is as random as the configuration can allow. Is
this to say that the random configuration is not algorithmically compressible? After
a few thousand timesteps, the internal process (elementary CA rule 110) has
significantly changed the computational-mechanical theoretic properties of the
configuration. It appears that E(L) and hµ(L), the L-dependent effective excess
entropy and L-dependent effective entropy rate, can describe much more of the
process than the simple scalars E and hµ. The utility of the effective entropy
measures is very apparent in Figure 8.

(a)

Figure 8

Figure 8 shows the effective excess entropy, an the how different length scales will
have different apparent memory. Comparing (a) and (b) suggests that the effective
excess entropy depends on the number of lattice sites more than the other entropy
measures.

(b)

(the last time in 8(b) should read ‘t = 10000’)
Figure 8

We note that for L between 1 and 2, there is a negative effective excess entropy,
suggesting some sort of negative memory. Is this meaningful? Is this a true
memory sink or just an artifact of an inconsistent alphabet between L=1 and L=2? I
believe that this is a feature of the geometry. It reflects the ratio of surface area
cells to cells in the volume enclosed by this surface layer. In two dimensions, there
will be a different characteristic curve. This could be good: The entropy curves
could tell us something about the geometry of our configuration if this is something
that we would like to infer. However, if we wanted to avoid this feature, we could
plot H(L) vs. ξ(L) to obtain the entropy as a function of cells in the volume
considered. Similarly, one might like to plot E(L) = H(L) - hµ(L) L as E(ξ(L)) =
H(ξ(L)) - hµ(ξ(L)) ξ(L) to see excess entropy as a function of neighborhood volume.
Meanwhile, neighborhoods from about L=4 up to L=100 all have a persistent
apparent memory of between 4 and 5 bits, and a nearly constant entopy rate. We
are starting to see that there are characteristic lengths that processes manifest in
their physical medium.

 Curves that saturate at different L have different translational symmetries of
their probable structure. The L at which a curve reaches hµ(L) = 0, the saturation
L, Lsat, is roughly the maximum radius of coherent structure. Usually, the curve
will be saturating Hsat, but not necessarily. As we see in Figure 9, the characteristic
curve for Rule 250 saturates at H = 1 bit.
 The friendly neighborhood, ξ(Lsat) is the last characteristic length scale that is
relevant to the overall structure. Strictly, however, ξ(Lsat) is only the length
(volume = length for 1-D) at which all block-translations are unique, and so we need
some more sophisticated analysis to really understand the reason for saturation and
the rates of information gain at L less than Lsat. Reconstructing an epsilon machine
might be an appropriate step to take here.

(a)
Figure 9

Elementary CA Rule 250 (spacetime diagram above) propagates a checkerboard

configuration from a single impulse at t0.

(b)

Figure 9

In Figure 9 (a) and (b), we see that the alternating 010101… sequence, generated by
elementary CA rule 250, has H(L) = 1 bit for all L after the steady state time has
been reached, so long as the circular boundaries connect a 0 to a 1 (even # of lattice
sites).
 Because of the variable alphabet size, H(L) is generally a more interesting
function of L than we have seen for simple binary alphabets like H(ξ). The
strongest constraints on this function is that H(L) must be monotonically
increasing. However, H(L) need not be concave down.
 We will now take a step back from our long look at the time evolution of the
strictly-spatial causal onion, and will consider inferring the information content of a
physical array of bistable nearest neighbor elements through a time series of
measurements.

The Temporal Onion:

 How can we determine the correct general epsilon machine for a bistable
element with nearest neighbor coupling? We can start by considering the simple
time series of the internal state of the element. If there are two recurrent states, we
might expect a three state epsilon machine, with one transient state representing
initial ignorance of internal state. We might also expect that measuring a new
internal state gives a transition probability. So perhaps we have three states and

six transition edges, as shown in Figure 10, below:

Figure 10

However, given a particular system from the class of systems under consideration,
the Hamiltonian (or rule as in the case of CA) nearly explicitly gives us the
probability of an element’s next state, given the previous state of the element and
its nearest neighbors. We thus need to include this information so we are not
averaging over relevant information, making the process appear more random than
it really is. We can expand the transition probabilities shown in the above figure to
include more of the information actually available to the system. For the general
epsilon machine for a bistable element with nearest neighbor coupling, we expand
transition probabilities to include the effects of nearest neighbors as follows:

!

P(St +1

n
= s | St

n
= " s) = P(St +1

n
= s | S

n#1
S

n
S

n +1

t
= s j

" s sk)
s j ,sk

!

= P(St

n"1 = s j ,St

n +1 = sk) * P(St +1
n = s | S

n"1
S

n
S

n +1

t
= s j

s sk){ }
sk $A

%
s j $A

%

where

!

n is the lattice site of the element in question,

!

t is the current discrete time,
and

!

A is the set of all symbols in the alphabet. For a single bistable element, this
alphabet has only two symbols. Therefore,

!

P(S
t +1

n
= s | S

t

n
= " s) has been split into

four separate pathways, each potentially with unique dynamics and transition
probabilities. Distinguishing among these pathways can have consequences for the
information theoretic and computational mechanics theoretic quantities of the
machine, reflecting an enriched understanding of the properties of the system.
 For completeness, we need to also consider the generalization of the transient
transition probabilities. The following derivation shows that there is a simple
generalization:

!

P(St

n
= " s) = P(St

n
= " s | S

n#1
S

n +1

t
= s jsk)

s j ,sk

!

= P(St

n"1 = s j ,St

n +1 = sk) * P(St

n = # s | S
n"1

S
n +1

t
= s jsk){ }

sk $A

%
s j $A

%

!

= P(S
n"1

S
n
S

n +1

t
= s j

s sk){ }
sk $A

%
s j $A

%

where we have used Bayes’ Theorem in the last step.
 These results can be summarized with the following visualization of a rather
general machine for a bistable element with nearest neighbor coupling(note that
this is not the same as the machine for a network of bistable nearest neighbor
elements):

Figure 11

The above black and white squares represent the two bistable states, the time index
is removed only to reduce clutter (so the transition probabilities are still, in general,

non-stationary), and the spatial index is implied by the relative positions of the
squares.
 For many systems, the fundamental rules of interaction do not change in time,
so often

!

P(St +1

n
= s | S

n"1
S

n
S

n +1

t
= s j

s sk) is stationary, although it need not be in
general. As an example where the rules could change, a gated RKKY interaction
among nearest-neighbor macrospins of superparamagnetic nanoparticles could have
the rules changed through a modulation of gate voltage. For most of the example
systems described in this paper,

!

P(St +1

n
= s | S

n"1
S

n
S

n +1

t
= s j

s sk) is stationary.
 Unlike

!

P(St +1

n
= s | S

n"1
S

n
S

n +1

t
= s j

s sk),

!

P(St
n"1

= s j ,St
n+1

= sk) will almost always
be non-stationary. There are several perspectives to take here. If we are at some
time less than t, and we are projecting into the future, then this probability depends
non-trivially on each subsequent measurement. However, if we are assuming that
we are at some time greater or equal to t already, then

!

P(St
n"1

= s j ,St
n+1

= sk) # {0,1} .
Since the state transition occurs in this regime (at time t), we might as well choose
a different representation then to get rid of this rather trivial time-dependence. In
fact, because of the causal influence of nearest neighbors, each of the eight possible
triplet configurations really is a causal state. We are again justified in segmenting
the former epsilon machine, as shown formally below. We will proceed by
considering

!

P(St

n"1
= s j ,St

n +1
= sk) * P(St +1

n
= s | S

n"1
S

n
S

n +1

t
= s j

s sk) in more detail.
 First, we consider the separate paths obtained from this transition probability,
assuming that it could come from any of the four triplet measurements consistent
with

!

S
t

n
= " s , and show that

!

P(St
n"1

= s j ,St
n+1

= sk) is only nonzero for one of the previous
triplet states:

!

P(St
n"1

= s j ,St
n+1

= sk) = P(St
n"1

= s j , St
n+1

= sk | S
n"1
S
n
S
n+1

t
= s1s2s3)

s1s2s3

!

= P(S
n"1
S
n
S
n+1

t
= s1s2s3) * P(St

n"1 = s j , St
n+1 = sk | S

n"1
S
n
S
n+1

t
= s1s2s3){ }

s3 #A

$
s2 #A

$
s1 #A

$

!

= P(S
n"1
S
n
S
n+1

t
= s

1
s
2
s
3
) * #s j ,s1#sk ,s3{ }

s3 $A

%
s2 $A

%
s1 $A

%

Given that we are in the triplet state,

!

S
n"1
S
n
S
n+1

t
= s

1
s
2
s
3
, this part of the transition

probability normalizes to unity.
 Next, we show that

!

P(St +1

n
= s | S

n"1
S

n
S

n +1

t
= s j

s sk) is simply the sum [linear
superposition] of separate transition probabilities [-y pathways] among the eight
new states:

!

P(S
t+1
n = s | S

n"1
S
n
S
n+1

t
= s1s2s3) = P(S

n"1
S
n
S
n+1

t+1 = s
L
ss

R
| S

n"1
S
n
S
n+1

t
= s1s2s3){ }

s
R
#A

$
s
L
#A

$

So, the nodes have split into the more explicit triplets and have taken along their

natural transition probabilities and symbols. [Because of the renaming of states,
we note that the new transition probabilities are of the form,

!

P(S
n"1
S
n
S
n+1

t+1 = s
L
ss

R
| S

n"1
S
n
S
n+1

t
= s1s2s3). The previous equation serves as a

mapping between the alternatively nested representations of the machine.] The
new representation of the single-element machine is presented below. Yet our work
is not done. As we have become more explicit, we have noticed new dependencies in
our transition probabilities. In general this trend can continue, and we are
obligated to pursue even the most subtle effects on transition probabilities if we are
to claim to have found the epsilon machine, or minimum statistic, for the system.

Figure 12

A Waft of the Spacetime Onion

 If we track the probability distribution of the entire spacetime lattice, given all
previous measurements, as best as possible, then we are truly representing the
transition probabilities. Is this necessary? Yes, if we want a minimal statistic.
 We can continue to reduce the apparent randomness in our system by being
explicit about the spacetime dependence of the probabilities, as functions of n and t.
An intelligent agent sitting at a single lattice site will be capable of reconstructing
different amounts of the lattice’s discrete-spacetime past and future for different

systems. However, more surprisingly, an intelligent agent at a single lattice point
may be able to reconstruct the present values of the whole lattice with some
probability distribution. This eerily EPR-type result deserves some attention!
Although information cannot physically travel faster than the system’s light speed,
the probability of an event could depend on the expected value of another event
outside of their mutual light-cones. A more intuitive explanation is possible: given
a sufficiently long time series, an agent at a single lattice point can reconstruct a
probability distribution for the initial conditions for the whole lattice (assuming a
finite lattice; otherwise read ‘whole’ as ‘observable’ à la observable universe). The
learned rules of local interaction can then be applied to the inferred global
probability distribution to construct a probability distribution for the current states
over the entire lattice. This spacetime probability distribution should then be
evolved to predict the future of the entire lattice at some arbitrary future time. In
fact this process of prediction and retrodiction can go back and forth at every
timestep to keep the most accurate record of the global spacetime probability
distribution, even for probabilities outside of one’s light cone. To be general, one
must be completely explicit in all possible spacetime contributions to the transition
probabilities. However, this extra effort is not warranted for a typical system. Yet
the general formalism will help describe the complexity of all possible systems
under considerations, and will allow for a classification scheme. If known, the
initial conditions (and more generally, the evolution of the word probability
distributions) will also change the time-dependent conditional probabilities. An
intelligent agent at some lattice point (imagine a scientist sitting inside of a CA cell
only able to see his own and directly neighboring cells) could discover these time
dependent properties, so they really do belong explicitly in the epsilon machine of
the system.

Inferring Machines and Basins for Small Simple Systems

 From an engineering perspective, we might be interested in how a probability
distribution evolves from a particular initial condition. For example, we could find
sets of inputs that result in a desired behavior. Or instead we might want to design
a system that carries out a particular function on a predefined set of inputs. The
latter situation would be desirable, for example, to implement an image processing
task such as edge detection.

 (a) (b)
 Figure 13

Above are the Markov process (a) and resulting epsilon Machine (b) for a uniform
lattice of three circularly bound Rule 110 CA.

 Figure 14(a)

Above, Figure 14 (a) is the Markov process for a uniform lattice of five circularly
bound Rule 110 CA. Below, Figure 14 (b) is the resulting epsilon Machine for the
process.

Figure 14 (b)

It seems like the above results are predictable and rather uninteresting. Is there
any reason to continue this investigation? The following sequence of four panels is
the Markov process for a uniform lattice of ten circularly bound Rule 110 CA,
connected from left to right. We see that there are multiple basins of attraction
with steady state sequences of different periodicity. The structure in the graph is
also rather stunning, although we must be careful to distinguish between graph-
layout algorithms and the true underlying geometry.

Figure 15 (Left)

Figure 15 (Right)

Although the 1024 nodes of the graph make many details hard to see, the green
coloring makes recurrent states readily identifiable. In the end, there are only four
distinct recurrent processes when considering translational invariance. Much of the
structure seems to come from the redundancy of translationally invariant states in
this uniform CA.

(a) Figure 16 (b)

 As seen in Figure 16 (a), the all zeros (ten-circularly bounded rule 110 CA with
all zero values) state returns to itself with period one.
 One can land in the period-five basin by starting with any translation of the
sequence of six consecutive ones followed by four consecutive zeros (b).

(c) Figure 16 (d)

 Five consecutive zeros will land you immediately in the period-twenty-five
basin, of Figure 16 (c), above.
 Finally, perhaps one of the more unique basins, including states with only two
zeros separated by three ones, has period-fifteen: Figure 16 (d).

(a) (b) (c) (d)
Figure 17

(a) simulation of CA rule 110 with a length-10 lattice and IC 0100111011.
(b) inferred epsilon machine using binary string data of cell[1] (the second cell on
the left (all black sequence)).
(c) inferred epsilon machine using nearest neighbor string data of cell[1] (except the
states are actually labeled backwards).
(d) actual epsilon machine for the basin of attraction associated with the IC.

Results

 In pursuit of a computational mechanics for nanoelectronic arrays, we found
ourselves delving head first into the more general but necessary prerequisite
question of how computational mechanics can be extended to accomodate
spatiotemporal processes. We considered several different incarnations of L, but
were always guided by the causal onion principle that a word of length L should
represent a measurement from the system that includes L layers of causal
information. Investigation of the strictly-spatial onion led us to some interesting
constraints on typical entropy measures, and a conclusion that effective measures,

as functions of L, will usually be more insightful when trying to figure out the
information processing capabilities of your process. Exploration of other onions led
us to discover an intricate relationship between spatial and temporal probability
densities, with the conclusion that a spacetime probability density should be
constantly updated through prediction and retrodiction to truly have a minimal
statistic for the system. This is not always necessary, but is generally so, for the
class of systems considered in this project.

References

[1] Paul M. Riechers and Richard A. Kiehl, “CNN Implemented by Nonlinear Phase

Dynamics in Nanoscale Processes,” 2010 12th International Workshop on
Cellular Nanoscale Networks and their Applications (CNNA 2010).

[2] C. R. Shalizi and J. P. Crutchfield, "Computational Mechanics: Pattern and

Prediction, Structure and Simplicity", Journal of Statistical Physics 104 (2001)
819--881.

 [3] Leon O Chua. CNN: A PARADIGM FOR COMPLEXITY. World Scientific Series

on Nonlinear Science, Series A – Vol. 31 , 1998.

[4] S. Wolfram. A New Kind of Science, Wolfram Media, 2002.

[5] Moshe Sipper, “Co-evolving Non-Uniform Cellular Automata to Perform

Computations,” Physica D, 92:193-208, 1996.

[6] David Feldman. Computational Mechanics of Classical Spin Systems. PhD

thesis, University of California at Davis, 1998.

[7] David P. Feldman and James P. Crutchfield, “Structural Information in Two-

Dimensional Patterns: Entropy Convergence and Excess Entropy,” Santa Fe
Institute Working Paper 02-11-065 arxiv.org/abs/cond-mat/0212078

[8] Mark H. Bickhard with Donald T. Campbell, “Emergence,”

http://www.lehigh.edu/~mhb0/Emergence27Jul97.pdf

[9] Bertrand Mesot and Christof Teuscher, “Deducing local rules for solving global

tasks with random Boolean networks,” Physica D, 211 (2005) 88-106

[10] Fred Rieke, David Warland, Rob de Ruyter van Steveninck, and William

Bialek, Spikes: Exploring the Neural Code. The MIT Press. 1999.

[11] Thomas M. Cover and Joy A. Thomas, Elements of Information Theory. Second

Edition. Wiley-Interscience. New York (2006).

Appendix: Future Directions

 This project was primarily motivated by some observations, questions, and
frustrations I had while exploring the theoretical information processing
capabilities of nanoscale arrays. In Ref. [1], we emphasize the limitations that a
uniformly coupled physical array imposes on its computational abilities. My
original project goal was to focus on the benefits of nonuniform coupling, but I found
that there was much work in just figuring out a consistent framework for
computational mechanics in a spatially extended system. As evident by the many
loose ends in this paper, this very basic theoretical development is still far from
complete. However, through this project, I have started to develop some
computational-mechanical tools that could help guide the development of future
nanoscale arrays. I will continue to think about the basics, but I am also interested
in extending this foundation to address the ambitious questions I set out with.
 Most of my considerations so far have been limited to very basic coupling
paradigms. Eventually this methodology should be quite easily extendable to a
more general class of systems, where for example the bistability and nearest-
neighbor conditions are relaxed. I hope that I can develop the spatiotemporal
computational mechanical tools further to be able to address my questions about
how to design an array to utilize nonuniform coupling. I am interested in
manipulating coupling parameters and topology to realize supercells that
implement more desirable rules than a simple physical process can exhibit solely
with uniform coupling. A potential goal for a functional cluster in an array could be
to mimic a CA rule. At a higher hierarchical level, supercells of different CA-like
rules could then be used as building blocks in a non-uniformly coupled CA array.
Again, at this level, we need a useful set of tools to find useful emergent
computational properties of the array. As a simple illustrative example of non-
uniform coupling, consider a three-unit CA block with circular boundary conditions.
It appears that we can implement any periodic pattern with T ≤ 8, as long as no
word is repeated twice in the sequence. Designing such a trio is not too hard. For
example, coupling CA rules, – 108 – 102 – 51 –, in this way yields a three-bit binary
counter. Specifically, the new rule on the three bits is: ‘Count to the next integer,
(mod 8).’ However, the aforementioned example is not really exemplary of the
desired result of this project, because the trio does not use anything other than local
information, and does not exploit the computational powers of wild boundary
conditions. Drastically more interesting behavior should be possible for larger non-
uniform CA arrays. As a proven example, nearest-neighbor non-uniformly coupled
CA have been evolved to outperform the best possible nearest-neighbor uniformly
coupled CA for the task of deciding whether or not the majority of initial cell values
were 1’s [5]. The continued development of this project will contribute to the
understanding of arrays with a small number of available components yet a large
number of coupling constraints.

