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This project aims to develop useful theoretical and computational tools for the 
discovery and analysis of information processing rules that emerge from the 
nonlinear interaction of simple spatially extended bistable elements with nearest-
neighbor coupling.  Although I have developed this project with nanoelectronic 
components in mind, I have tried to create a more general framework to understand 
how computational mechanics can be applied to simple processes with 
spatiotemporal extent.  Several example systems, including some elementary 
cellular automata (CA), are discussed for concreteness. 



Introduction 
 
 This paper summarizes my initial efforts to formulate a systematic approach to 
discover the intrinsic computational abilities of simple arrangements of interacting 
bistable elements in a physical nanoelectronic array.  Possible components of 
interest, like capacitively coupled single-electron tunneling junctions or exchange- 
coupled superparamagnetic nanoparticles would have a very simple physical 
structure as well as a very simple coupling mechanism.  Since the underlying 
dynamics are also rather simple, the computational power of such a system depends 
on the rules of information processing that emerge from the nonlinear collaboration 
among the cells in the array.  However, there is currently no straightforward way to 
engineer such collaboration.   
 The section on Continuous Dynamical Computing in Appendix H of Ref. [2] 
suggests that computational mechanics is an appropriate tool for a more systematic 
study of the attainable behavior in such arrays.  Specifically, computational 
mechanics can detect what a system is intrinsically computing.  At least for a small 
functional subset, or supercell, of an array, the interpretation of function might be 
tractable.  
 After giving a background on a few of the dynamical systems that can be 
addressed with the spatiotemporal computational-mechanical analysis developed in 
this project, I will discuss a selection of methods and results.  Most of the methods 
have been an inspired combination of concepts from information theory [11] and 
computational mechanics [2]. Although some work has successfully used 
computation mechanics to discover structure in spatially extended systems (see e.g. 
Ref. [6],[7]), some of the methods seem unnatural since they were adapted from 
time series analysis, and a clear theoretical foundation is still needed to advance 
this promising application of computational mechanics.   
 I have approached the challenge of spatiotemporal generalization in several 
steps.  First, I show how strictly-spatial information should be described, and how 
we can visualize its evolution in time.  Next, I consider the evolution of strictly-
temporal information about structure, more as a time series analysis.  Finally, I 
discuss some preliminary thoughts and results regarding the structure of 
information in a process’ evolving spacetime probability distribution.  Although I 
have not yet come up with a completely cohesive framework, I have tried to show 
why my approach is appropriate for finding structure in spatiotemporal processes, 
and have tried to discuss many remaining items of inconsistency. 
 

Background of Relevant Dynamical Systems 
 
 Although a wide variety of physical mechanisms with rich continuous 
dynamics can mediate the interaction among components in nanoscale arrays, we 
can often discretize these systems in meaningful ways to define a finite-state, 



discrete-time process. Specifically, many systems of interest can be abstracted to a 
set of bistable elements with nearest-neighbor coupling.  Furthermore, if 
oscillations have a characteristic time scale (and possibly even synchronize or occur 
in short time windows), the process has a natural discrete time step.  In such cases, 
initially disparate physical processes can be partitioned in a meaningfully similar 
way.  Through this partitioning, these different systems become amenable to a 
common set of analysis and design tools, while they maintain the intrinsic 
computational power of their unique continuous dynamic. 
 There are many examples of systems, from theoretical to physical to electrical, 
that fall under the proposed common framework.  Simple and well-studied systems 
with spatially extended bistable elements include Cellular Automata (CA) and Ising 
spin lattices.  Standard CNN1 allows for more complicated neighboring interactions, 
but is still implemented through uniform coupling in the sense that each cell uses 
the same template that defines the rule for interaction [3].  A truly nanoscale array 
could use Coulomb blockade to create bistable single-electron tunneling phase 
states in small capacitively coupled electrical junctions, as in TPL-CNN.  
Alternatively, a gated RKKY interaction is being investigated to couple bistable 
macrospins in an array of superparamagnetic nanoparticles.   
 Elementary CA consists of a uniform spatial arrangement of indistinguishable 
automata all following the same rule carried out in discrete time steps. Despite the 
system’s simple description, several rules yield beautifully complex spatiotemporal 
patterns, and are even capable of universal computation [4].   
 While CA was not created to model a particular physical phenomenon, the 
Ising spin lattice was originally presented as a simple model for a uniform spatial 
arrangement of electron spins that can either align or anti-align with an external 
magnetic field at finite temperature.  Besides the energetic motivation to align with 
the external field, the antisymmetric requirement of overlapping fermion 
wavefunctions couples neighboring electrons with an exchange energy term.  
Although highly simplified, this model of a spin system is still able to show phase 
transitions at critical temperatures in two-dimensions. 
 CNN is spatially discrete but computes continuously in time.  It has been used 
for a variety of practical applications, the most common of which is dynamic image 
processing, and perhaps one of the more unexpected is elementary particle 
detection. 
 The quantum mechanical processes of single-electron tunneling and RKKY 
exchange interaction are both imagined to be implemented in arrays that are nearly 
spatially discrete.  Although the interactions are continuous in time, tunneling 
events and spin flips can generally be considered discrete time events, since the 
time scale of the transition is so much shorter than the time between events. 
 As the following one-dimensional TPL-CNN spacetime diagrams suggest, one-
                                                
1 CNN is an evolving acronym that has at different times stood for Cellular Neural Networks, 
Cellular Nonlinear Networks, and Cellular Nanoscale Networks.  Despite the most recent name, 
commercially available CNN processors are implemented through an elaborate CMOS structure 
that is far from nanoscale implementation. 



dimensional single-electron tunneling is capable of producing behavior that could be 
captured by fairly simple rules: 
 
 

            
 
The first few rows of the spacetime diagram show the transient information 
processing on a vector of random initial conditions, performed by a row of single-
electron tunneling junctions with uniform capacitive coupling and a uniform bias 
voltage distribution.  The uniform capacitive coupling and uniform bias distribution 
assure that each of the tunneling junctions implements the same intrinsic 
symmetric rule2.  Additionally, the uniform voltage bias has been chosen to keep 
each cell in the bistable mode.  Figure 2 shows another example of a TPL CNN 
spacetime diagram, this time using a graded coupling scheme to implement an 
asymmetric rule:    
 

                                                
2 Actually, without circular boundary conditions this is not quite accurate. The boundaries have 
only one nearest neighbor, instead of the normal two, causing slightly different dynamics or 
rules.  This difference propagates through the one-dimensional array like a reflection in a cavity.  
If we wanted to get a pure rule, we would need an infinitely long array, or an array with circular 
boundary conditions.  However, simulations show that spacetime diagrams from longer arrays 
under the same voltage bias display similar patterns to that seen in Figure 1.  The different 
behavior at these boundaries is the first hint that boundaries could be useful to enrich the type of 
information processing from a simple process like single-electron tunneling. 

 
   

 
 
1-D TPL-CNN spacetime diagram with 
uniform bistable bias, uniform coupling, 
and random initial conditions.  The 
horizontal axis represents the spatial 
dimension.  Time increases as you go 
down the diagram.  The first row, 
below, is the first time step.  On the 
right, we see that the one-dimensional 
array settles down to a periodic 
‘decision’ representing a computation 
on the initial conditions. 

The above time series shows the actual 
dynamics of the tunneling phase in the 
first cell of the array, and shows how the 
period of the tunneling event determines 
the binary output. 

Figure 1 

 

 



                   
 
Figure 3 shows an example of exotic boundary conditions—a double-chamber 
supercell with a single-slit coupling—significantly contributing to the function of 
the two-dimensional array.  This figure exemplifies the importance of boundary 
conditions in the information processing in a physical array.  Boundary conditions 
can actually perform a computation, so we cannot always ignore them, or assume 
circular boundary conditions as is usually done for CA analysis.  I will be guilty of 
using circular boundary conditions for CA later in this paper, but I will also make 
some comments about possible ways to account for boundary conditions in 
computational mechanics analysis, where there presence is important. 
 
 

 
 
 

Figure 3 
Evolution of phase states in a two-chamber system 
coupled by a single slit.  Gray represents cells that have 
been removed from the two-dimensional array.  Blue and 
yellow represent binary phase states.  The array was 
initially excited by a small square of nine cells in the left 
half of the bottom chamber that started in a different 
phase state than the rest of the array.  Besides being a 
clear example of the importance of boundary conditions, 
the setup could be interpreted as a single slit experiment 
for the propagation and interference of nonlinear waves. 

1-D bistable TPL-CNN with graded coupling-
capacitance.  Unlike the previous spacetime 
diagrams with uniform coupling, we can see 
both sides of branching spacetime trees carried 
to the left over time in this diagram.  The first 
panel shows the initial transient behavior from 
random initial conditions.  Subsequent panels 
represent chunks of time further in the future. 

 



Methods and Results 

Spatial Block Entropies 
 
 The block entropy for a length-L word is given by:  
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However, the correct interpretation of the above equation for spatially extended 
system is not immediately obvious, and in fact requires careful consideration.  Most 
fundamentally, what is L?  What constitutes a word in spatially extended systems?  
What is the size of the corresponding alphabet?  What if time is involved?  
Conversely, what if we are interested in purely spatial properties and want to 
ignore time?   
 I propose that a word of length L should represent a measurement from the system that 
includes L layers of causal information.  In different spacetime dimensions the shape of 
the onion of influence might change, but the following formalism, experimentation, 
and results represents the consequences of adhering to this assumption. 

The Strictly Spatial Onion 
 
 When first considering the above questions, it is important to note that 
different geometric spaces induce different types of alphabets.  Specifically, the type 
of coupling between neighbors determines the geometry of the causal onion, and 
thus the appropriate norm to map from the physical lattice to L-space.  For 
example, as shown in Figure 4, cells in a two dimensional array with four nearest 
neighbors induces a taxicab geometry, which uses the L1 norm, 
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| xLx |+ | xLy | for the D = 2 strictly spatial case),  with 

discrete lattice points, such that the L from the block entropy becomes 

! 

L =1+ || x ||
1
.  

The extra ‘1’ is due to the causal layer of self-influence.  Alternatively, we would 
expect that an inter-component interaction mediated through vacuum would make 
L-space exactly coincide with real-space.  In such cases (for example, 
communication via electromagnetic radiation through vacuum) our L-space would 
use the more familiar L2, or Euclidean, norm.  As a final example, an array of cells 
with eight nearest neighbors, in either two or three dimensions maps to L-space 
through the maximum, or Chebyshev, norm, L∞, such that 

! 

|| x ||" # max{| x1 |,...,| xD |} (which is 

! 

max{| xLx |,| xLy |} for the D = 2, strictly-spatial 
case).  It is interesting to make the analogy that the taxicab geometry relates to a 
simple cubic lattice, whereas the eight nearest neighbor case relates to a body 
centered cubic lattice.  A D-dimensional lattice with coupling through the face of the 
D-dimensional cube induces an L1 norm, while coupling through the corners of the 
D-cube requires the L∞ norm.  In one-dimension, all of the Lp norms are equivalent, 
so it is good that we have worked out the correct framework in higher dimensions. 
 Let us now relate our L-space observations back to the interpretation of block 
entropy: 
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The strictly spatial sphere of influence for an array with n internal states per cell, D 

 Figure 4 
 

         
 (a) L = 1    (b) L = 2   (c) L = 3 
The above length-L templates show how real-space maps to L-space for a 2-D array of elements (contained by the 
grid) with four nearest neighbors.  Each of these L-templates can be scanned across the entire array to find the 
corresponding P(sL) of the block-entropy equation in the spatial-only regime. 



spatial dimensions, and L1-norm coupling has 
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s
1
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L=1,1L=1}, but 
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2
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L= 2}.  The subscript on the letters is a reminder that the 
meaning of each symbol is unique.  For example, a ‘0’ in the set A(L=1) is different 
than the meaning of a ‘0’ in the set A(L=2).  In general the size of the alphabet 
(which is really more of a vocabulary) for length-L words is  
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at least in one and two dimensions, although I believe my formula is more general.  
The NC nearest neighbors are included implicitly in this formula since NC = 2D for 
L1-norm coupling.  Similarly, for a D-dimensional array with n internal states per 
cell and L∞-norm coupling, 
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1
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2
" {0,1,2,...,2

8
#1} , and in general,  
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at least in one through three dimensions.  The NC nearest neighbors are included 
implicitly in this formula since NC = 3D – 1, for L∞-norm coupling. 
 To further our discussion, we will define the neighborhood population ξ, at a 
particular L for any array as the number of cells enclosed in a volume of radius L.  
For a particular array, we should be able to define some relationship ξ(L), although 
ξ need not be linear in L.  This relationship is further complicated by boundary 
conditions, which we will consider in more detail in another section.  For now, let us 
assume that the relationship ξ(L) is known.  Since there is a finite number of cells, 
ξmax, in any physical array, we consider Lmax to be the smallest L such that ξ(L) = 
ξmax: 
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In terms of the neighborhood population, we can reformulate the alphabet length 
more generally as: 
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 To really understand the meaning and effect of probabilities in the block 
entropy, we should compare the number of possible L-words with the actual number 
of L-words that will be expressed at a given time for any finite (i.e. physically real) 
array.  A truly random set of events with infinitely many words has an entropy 
equal to the log of the length-L alphabet: 
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Hideally"random (L) = " P(sL )log2 P(s
L )

s
L #A

$ = log2(length{A(L)}) = %(L)log2(n)  



 
However, a physical system with only ξmax expressible variables has quantized 
probabilities: the minimum nonzero probability expressible by the system at any 
one time is 

! 

"P =1/#
max

.  Also, for any L, the number of L-words expressed at a given 
time will equal the number of cells in the array, ξmax.  So the closest that a finite 
physical system comes to a random configuration of L discrete variables is 
approximately described by the entropy: 
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Hphysically"random (L) #min log2(length{A(L)}),log2($max ){ } =min $(L)log2(n), log2($max ){ } 
 
although this is not quite correct since ξmax is not in general divisible by 
length{A(L)}, so that for small ξmax, this approximation will be poor when 
length{A(L)} < ξmax.   
 Now, we consider the reciprocal perspective on randomness to show that our 
quantized probabilities not only limit randomness, but also make non-random 
processes produce configurations that appear as random as possible when the 
would-have-been predictable structure has spatial frequency comparable to the 
lattice size.  We see that a configuration of ξmax cells has a maximum block-entropy, 
the saturation entropy:  
 

! 

H
sat

= log2("max ) 
 
independent of L, for all L such that ξ(L)log2(n) > log2(ξmax).   
 Aware of the features of finite probability resolution in a strictly-spatial 
system, we are now in a position to consider functions of H(L).  Although we will 
revisit the utility of these formulations, the typical entropy rate for finite L, which 
we will call the effective entropy rate at L, can still be defined as  
 
hµ(L) ≡ H(L) – H(L-1) 
 
and the excess entropy for finite L, which we will call the effective excess entropy at 
L, can be defined as 
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However, we can rewrite E(L) as  

E(L) = 
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E(L) = 

! 

H(L) " Lhµ (L). 
 
However, for any physical array, the maximum entropy of a spatial configuration, 
Hsat, (severely?) bounds the global entropy rate  
 
hµ ≡ hµ(Lmax)  
 
and imposes a limit on the global excess entropy  
 
E ≡ E(Lmax).  
 
We start considering these constraints with the simple y = mx + b of the block 
entropy diagram by rearranging and substituting the three equations above: 
 
H(Lmax) = Lmax hµ(Lmax) + E(Lmax)  =  Lmax hµ + E  ≤  Hsat  
 
Since E and hµ are assumed to be nonnegative, we have the weaker constraints that  
 
E ≤ 

! 

H
sat

= log2("max ) 
 
and 
 

! 

hµ "
H

sat

Lmax

=
log2(#max )

Lmax (#max )
 

 
The constraint on entropy rate here is very interesting, since the dimension and 
coupling of the physical array primarily determines the relationship between Lmax 
and ξmax .  This very general result is thus roughly a statement about how the 
entropy rate of physical configurations scale with physical dimension.  The result is 
especially insightful if we consider the limit of the number of array elements, ξmax → 
∞. 
 For one-dimensional systems, Lmax(ξmax) ∝ ξmax, so 
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So, for a one-dimensional system, hµ quickly tends to zero with increasing array 
size.  This result might be related to the nonexistence of phase transitions in most 
one-dimensional systems. 
 In contrast, Lmax(ξmax) ∝ ξmax½ for two-dimensional systems, and  
 
Lmax(ξmax) ∝ ξmax1/D  
 



for a D-dimensional spatial configuration.  For example, for a two-dimensional mxm 
array, ξmax = mxm = m2, but Lmax = 2m for L1 coupling while Lmax = m or L∞ coupling.  
Either way, ξmax ∝ Lmax2  →  Lmax(ξmax) ∝ ξmax½ for the two-dimensional array.  More 
generally, for an array of D physical dimensions,  
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so entropy rates of strictly-spatial configurations tend to zero as ξmax → ∞ in all 
dimensions, although the scaling rate of the inequality differ.   
 In contention with these results, one might argue that we must average over 
the spatial configuration of the array at different times to attain the true 
probability distribution. It seems that once we introduce probability measurements 
in time, we can beat our original probability resolution of 

! 

"P =1/# .  After some 
integer number of discrete time measurements has elapsed, the probability 
resolution for our configuration is now 

! 

"P = 1
#
max
"t

.  However, in a time dependent 
process, there has also been a far greater increase in time dependent probabilities, 
so we are really just embedding our problems in a new level of sophistication.  
Additionally, we are finding a probability distribution to a different question 
(although it is a question that we are likely interested in).  Yet, if we continually 
recreate the initial conditions of interest, we can begin to assimilate the correct 
time-dependent probability distribution, similar to the method of spike-triggered 
averaging in neuroscience [10].  The point is that for a deterministic system, the 
current configuration of the array is the correct probability distribution for L-blocks 
in the configuration, and the corresponding strictly-spatial block entropies lead to 
an entropy rate of the configuration that vanishes with increasing array size.  In 
fact, the only way to have a finite entropy rate is to have a finite array.   
 While the global entropy measures may have limited utility, the effective 
entropy measures for a configuration of states in a physical array could actually be 
extremely insightful.  Persistent effective entropy rates and effective excess 
entropies can describe the various types of patterns and computations interacting at 
different length scales. 
 We will see just a glimpse of the utility of viewing the time evolution of 
effective entropy rates and effective excess entropies for strictly-spatial 
configurations in the following section. 
 
 

Time Evolution of the Strictly Spatial Onion 
 
 In this section, we will investigate how a one-dimensional elementary cellular 
automata (CA) evolves in time.  Specifically, we will focus our examples on 
universal rule 110.  However, we will also mention a few other example systems for 



contrast. 
 For a one-dimensional system of bistable elements with nearest neighbor 
coupling, the alphabet size at a given integer L > 0 is  
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from the above definition.  Because the array is one-dimensional (with circular 
boundary conditions), 2Lmax – 1 =  ξmax,  so      
 
Lmax = (ξmax + 1) / 2 
 
The maximum global entropy rate for the configuration at any one time is thus 
bounded by 
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=
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while the global excess entropy is bounded by  
 
E ≤ 

! 

log2("max ). 
 
These global limitations will be apparent in the examples, but our interest will most 
likely yield to the time evolution of the effective entropy rates and effective excess 
entropy as the underlying dynamics generating the spatial configuration give 
different structure at different scales. 
 
 



 
        (a) 

 
(b) 

Figure 5 
 
 Figure 5 shows the evolution of strictly-spatial block entropies and entropy 
rates from random initial conditions for elementary CA rule 
110.



 
(a) 

 
(b) 

Figure 6 
 Figure 6 shows the evolution of strictly-spatial block entropies and entropy 
rates from random initial conditions for elementary CA rule 110.  The saturation L 
decreases and again increasing after t ≈ nSites = 206.  We are really just watching 
the process become disordered (until about t =50) as apparent in Figure 7, and then 
finally settling down to the H(L) plot characteristic of CA 110.  



      
(a)         (b) 

Figure 7 
Above: A 206-site Rule 110 spacetime excerpts for (a) the beginning of the evolution 

and then (b) up to t = 2000, corresponding to Figures 5 and 6 
 
How do we know that this curve (Figure 6, at ~t = 10000) is characteristic of 110?  
Figure 5 and Figure 7 can be used to argue heuristically.  The first shows that we 
approach approximately the same line from random ICs.  The second shows that we 
approach the same line even for a much larger (and thus more trustworthy) number 
of cells.  The similarity of the steady state H(L) curves in Figures 5, 6, and 7 (at 
least in the range of L ≤ 40) suggests that this H(L) line is really a distinct feature 
of Rule 110. 



 
(a) 

 
(b) 

Figure 7 
 
Random initial conditions in Figure 7 give hµ = 0 bits/layer and E = log2(6006) = 
12.55 bits.  hµ is related to the unpredictability, or information gain, in the system: 
apparently the entire configuration could be reconstructed from the probabilities 
given up to Lsat.  E = log2(6006) bits suggests that the configuration is fully utilizing 



its available memory: essentially it is as random as the configuration can allow.  Is 
this to say that the random configuration is not algorithmically compressible?  After 
a few thousand timesteps, the internal process (elementary CA rule 110) has 
significantly changed the computational-mechanical theoretic properties of the 
configuration. It appears that E(L) and hµ(L), the L-dependent effective excess 
entropy and L-dependent effective entropy rate, can describe much more of the 
process than the simple scalars E and hµ.  The utility of the effective entropy 
measures is very apparent in Figure 8. 
 
 

 
(a) 

Figure 8 
 
 
Figure 8 shows the effective excess entropy, an the how different length scales will 
have different apparent memory.  Comparing (a) and (b) suggests that the effective 
excess entropy depends on the number of lattice sites more than the other entropy 
measures. 



 
(b) 

(the last time in 8(b) should read ‘t = 10000’) 
Figure 8 

 
We note that for L between 1 and 2, there is a negative effective excess entropy, 
suggesting some sort of negative memory.  Is this meaningful?  Is this a true 
memory sink or just an artifact of an inconsistent alphabet between L=1 and L=2?  I 
believe that this is a feature of the geometry.  It reflects the ratio of surface area 
cells to cells in the volume enclosed by this surface layer.  In two dimensions, there 
will be a different characteristic curve.  This could be good:  The entropy curves 
could tell us something about the geometry of our configuration if this is something 
that we would like to infer.  However, if we wanted to avoid this feature, we could 
plot H(L) vs. ξ(L) to obtain the entropy as a function of cells in the volume 
considered.  Similarly, one might like to plot E(L) = H(L) - hµ(L) L as E(ξ(L)) = 
H(ξ(L)) - hµ(ξ(L)) ξ(L) to see excess entropy as a function of neighborhood volume.  
Meanwhile, neighborhoods from about L=4 up to L=100 all have a persistent 
apparent memory of between 4 and 5 bits, and a nearly constant entopy rate.  We 
are starting to see that there are characteristic lengths that processes manifest in 
their physical medium.   
 
 
 



 Curves that saturate at different L have different translational symmetries of 
their probable structure.  The L at which a curve reaches hµ(L) = 0, the saturation 
L, Lsat, is roughly the maximum radius of coherent structure.  Usually, the curve 
will be saturating Hsat, but not necessarily.  As we see in Figure 9, the characteristic 
curve for Rule 250 saturates at H = 1 bit.   
 The friendly neighborhood, ξ(Lsat) is the last characteristic length scale that is 
relevant to the overall structure.  Strictly, however, ξ(Lsat) is only the length 
(volume = length for 1-D) at which all block-translations are unique, and so we need 
some more sophisticated analysis to really understand the reason for saturation and 
the rates of information gain at L less than Lsat.  Reconstructing an epsilon machine 
might be an appropriate step to take here. 
 
 
 
 

 
 

(a) 
Figure 9 

 
Elementary CA Rule 250 (spacetime diagram above) propagates a checkerboard 

configuration from a single impulse at t0. 



 
(b) 

Figure 9 
 
In Figure 9 (a) and (b), we see that the alternating 010101… sequence, generated by 
elementary CA rule 250, has H(L) = 1 bit for all L after the steady state time has 
been reached, so long as the circular boundaries connect a 0 to a 1 (even # of lattice 
sites). 
 Because of the variable alphabet size, H(L) is generally a more interesting 
function of L than we have seen for simple binary alphabets like H(ξ).  The 
strongest constraints on this function is that H(L) must be monotonically 
increasing.  However, H(L) need not be concave down. 
 We will now take a step back from our long look at the time evolution of the 
strictly-spatial causal onion, and will consider inferring the information content of a 
physical array of bistable nearest neighbor elements through a time series of 
measurements. 
 

The Temporal Onion: 
 
 How can we determine the correct general epsilon machine for a bistable 
element with nearest neighbor coupling?  We can start by considering the simple 
time series of the internal state of the element.  If there are two recurrent states, we 
might expect a three state epsilon machine, with one transient state representing 
initial ignorance of internal state.  We might also expect that measuring a new 
internal state gives a transition probability.  So perhaps we have three states and 



six transition edges, as shown in Figure 10, below:  
 

 
 

Figure 10 
 
However, given a particular system from the class of systems under consideration, 
the Hamiltonian (or rule as in the case of CA) nearly explicitly gives us the 
probability of an element’s next state, given the previous state of the element and 
its nearest neighbors.  We thus need to include this information so we are not 
averaging over relevant information, making the process appear more random than 
it really is.  We can expand the transition probabilities shown in the above figure to 
include more of the information actually available to the system.  For the general 
epsilon machine for a bistable element with nearest neighbor coupling, we expand 
transition probabilities to include the effects of nearest neighbors as follows: 
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where 

! 

n  is the lattice site of the element in question, 

! 

t  is the current discrete time, 
and 

! 

A  is the set of all symbols in the alphabet.  For a single bistable element, this 
alphabet has only two symbols.  Therefore, 
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P(S
t +1

n
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t

n
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four separate pathways, each potentially with unique dynamics and transition 
probabilities.  Distinguishing among these pathways can have consequences for the 
information theoretic and computational mechanics theoretic quantities of the 
machine, reflecting an enriched understanding of the properties of the system.   
 For completeness, we need to also consider the generalization of the transient 
transition probabilities.  The following derivation shows that there is a simple 
generalization: 
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where we have used Bayes’ Theorem in the last step. 
 These results can be summarized with the following visualization of a rather 
general machine for a bistable element with nearest neighbor coupling(note that 
this is not the same as the machine for a network of bistable nearest neighbor 
elements): 

 
 

Figure 11 
 
The above black and white squares represent the two bistable states, the time index 
is removed only to reduce clutter (so the transition probabilities are still, in general, 



non-stationary), and the spatial index is implied by the relative positions of the 
squares. 
 For many systems, the fundamental rules of interaction do not change in time, 
so often 
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general.  As an example where the rules could change, a gated RKKY interaction 
among nearest-neighbor macrospins of superparamagnetic nanoparticles could have 
the rules changed through a modulation of gate voltage.  For most of the example 
systems described in this paper, 
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be non-stationary.  There are several perspectives to take here.  If we are at some 
time less than t, and we are projecting into the future, then this probability depends 
non-trivially on each subsequent measurement.  However, if we are assuming that 
we are at some time greater or equal to t already, then 
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Since the state transition occurs in this regime (at time t), we might as well choose 
a different representation then to get rid of this rather trivial time-dependence.  In 
fact, because of the causal influence of nearest neighbors, each of the eight possible 
triplet configurations really is a causal state.  We are again justified in segmenting 
the former epsilon machine, as shown formally below.  We will proceed by 
considering 
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 First, we consider the separate paths obtained from this transition probability, 
assuming that it could come from any of the four triplet measurements consistent 
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Given that we are in the triplet state, 
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probability normalizes to unity. 
 Next, we show that 
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superposition] of separate transition probabilities [-y pathways] among the eight 
new states: 
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So, the nodes have split into the more explicit triplets and have taken along their 



natural transition probabilities and symbols.  [Because of the renaming of states, 
we note that the new transition probabilities are of the form, 
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mapping between the alternatively nested representations of the machine.]  The 
new representation of the single-element machine is presented below.  Yet our work 
is not done.  As we have become more explicit, we have noticed new dependencies in 
our transition probabilities.  In general this trend can continue, and we are 
obligated to pursue even the most subtle effects on transition probabilities if we are 
to claim to have found the epsilon machine, or minimum statistic, for the system.  
 

 
 

Figure 12 

 

A Waft of the Spacetime Onion  
 
 If we track the probability distribution of the entire spacetime lattice, given all 
previous measurements, as best as possible, then we are truly representing the 
transition probabilities.  Is this necessary?  Yes, if we want a minimal statistic. 
 We can continue to reduce the apparent randomness in our system by being 
explicit about the spacetime dependence of the probabilities, as functions of n and t.  
An intelligent agent sitting at a single lattice site will be capable of reconstructing 
different amounts of the lattice’s discrete-spacetime past and future for different 



systems.  However, more surprisingly, an intelligent agent at a single lattice point 
may be able to reconstruct the present values of the whole lattice with some 
probability distribution.  This eerily EPR-type result deserves some attention!  
Although information cannot physically travel faster than the system’s light speed, 
the probability of an event could depend on the expected value of another event 
outside of their mutual light-cones.  A more intuitive explanation is possible:  given 
a sufficiently long time series, an agent at a single lattice point can reconstruct a 
probability distribution for the initial conditions for the whole lattice (assuming a 
finite lattice; otherwise read ‘whole’ as ‘observable’ à la observable universe).  The 
learned rules of local interaction can then be applied to the inferred global 
probability distribution to construct a probability distribution for the current states 
over the entire lattice.  This spacetime probability distribution should then be 
evolved to predict the future of the entire lattice at some arbitrary future time.  In 
fact this process of prediction and retrodiction can go back and forth at every 
timestep to keep the most accurate record of the global spacetime probability 
distribution, even for probabilities outside of one’s light cone.  To be general, one 
must be completely explicit in all possible spacetime contributions to the transition 
probabilities.  However, this extra effort is not warranted for a typical system.  Yet 
the general formalism will help describe the complexity of all possible systems 
under considerations, and will allow for a classification scheme.  If known, the 
initial conditions (and more generally, the evolution of the word probability 
distributions) will also change the time-dependent conditional probabilities.  An 
intelligent agent at some lattice point (imagine a scientist sitting inside of a CA cell 
only able to see his own and directly neighboring cells) could discover these time 
dependent properties, so they really do belong explicitly in the epsilon machine of 
the system.   
 



Inferring Machines and Basins for Small Simple Systems 
 
 From an engineering perspective, we might be interested in how a probability 
distribution evolves from a particular initial condition.  For example, we could find 
sets of inputs that result in a desired behavior.  Or instead we might want to design 
a system that carries out a particular function on a predefined set of inputs.  The 
latter situation would be desirable, for example, to implement an image processing 
task such as edge detection. 
 

 

     
 
 
    (a)       (b) 
       Figure 13 
 
Above are the Markov process (a) and resulting epsilon Machine (b) for a uniform 
lattice of three circularly bound Rule 110 CA. 
 



 
           

 Figure 14(a) 
 

Above, Figure 14 (a) is the Markov process for a uniform lattice of five circularly 
bound Rule 110 CA.  Below, Figure 14 (b) is the resulting epsilon Machine for the 
process. 

 
Figure 14 (b) 

 
It seems like the above results are predictable and rather uninteresting.  Is there 
any reason to continue this investigation?  The following sequence of four panels is 
the Markov process for a uniform lattice of ten circularly bound Rule 110 CA, 
connected from left to right.  We see that there are multiple basins of attraction 
with steady state sequences of different periodicity.  The structure in the graph is 
also rather stunning, although we must be careful to distinguish between graph-
layout algorithms and the true underlying geometry.



 
 

Figure 15 (Left) 
 

 
 

Figure 15 (Right) 
 
Although the 1024 nodes of the graph make many details hard to see, the green 
coloring makes recurrent states readily identifiable.  In the end, there are only four 
distinct recurrent processes when considering translational invariance.  Much of the 
structure seems to come from the redundancy of translationally invariant states in 
this uniform CA. 
 



         
 

(a)     Figure 16    (b)    
   

 As seen in Figure 16 (a), the all zeros (ten-circularly bounded rule 110 CA with 
all zero values) state returns to itself with period one.  
 One can land in the period-five basin by starting with any translation of the 
sequence of six consecutive ones followed by four consecutive zeros (b).   
 

     
(c)     Figure 16    (d) 
 
 Five consecutive zeros will land you immediately in the period-twenty-five 
basin, of Figure 16 (c), above. 
 Finally, perhaps one of the more unique basins, including states with only two 
zeros separated by three ones, has period-fifteen: Figure 16 (d). 



 

   
 

(a)  (b)    (c)      (d)     
Figure 17 

 
(a) simulation of CA rule 110 with a length-10 lattice and IC 0100111011.   
(b) inferred epsilon machine using binary string data of cell[1] (the second cell on 
the left (all black sequence)).  
(c) inferred epsilon machine using nearest neighbor string data of cell[1] (except the 
states are actually labeled backwards).   
(d) actual epsilon machine for the basin of attraction associated with the IC. 
 
 

Results 
 
 In pursuit of a computational mechanics for nanoelectronic arrays, we found 
ourselves delving head first into the more general but necessary prerequisite 
question of how computational mechanics can be extended to accomodate 
spatiotemporal processes.  We considered several different incarnations of L, but 
were always guided by the causal onion principle that a word of length L should 
represent a measurement from the system that includes L layers of causal 
information.  Investigation of the strictly-spatial onion led us to some interesting 
constraints on typical entropy measures, and a conclusion that effective measures, 



as functions of L, will usually be more insightful when trying to figure out the 
information processing capabilities of your process.  Exploration of other onions led 
us to discover an intricate relationship between spatial and temporal probability 
densities, with the conclusion that a spacetime probability density should be 
constantly updated through prediction and retrodiction to truly have a minimal 
statistic for the system.  This is not always necessary, but is generally so, for the 
class of systems considered in this project.  
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Appendix: Future Directions 
 
 This project was primarily motivated by some observations, questions, and 
frustrations I had while exploring the theoretical information processing 
capabilities of nanoscale arrays. In Ref. [1], we emphasize the limitations that a 
uniformly coupled physical array imposes on its computational abilities.  My 
original project goal was to focus on the benefits of nonuniform coupling, but I found 
that there was much work in just figuring out a consistent framework for 
computational mechanics in a spatially extended system.  As evident by the many 
loose ends in this paper, this very basic theoretical development is still far from 
complete.  However, through this project, I have started to develop some 
computational-mechanical tools that could help guide the development of future 
nanoscale arrays.  I will continue to think about the basics, but I am also interested 
in extending this foundation to address the ambitious questions I set out with. 
 Most of my considerations so far have been limited to very basic coupling 
paradigms.  Eventually this methodology should be quite easily extendable to a 
more general class of systems, where for example the bistability and nearest-
neighbor conditions are relaxed.  I hope that I can develop the spatiotemporal 
computational mechanical tools further to be able to address my questions about 
how to design an array to utilize nonuniform coupling.  I am interested in 
manipulating coupling parameters and topology to realize supercells that 
implement more desirable rules than a simple physical process can exhibit solely 
with uniform coupling.  A potential goal for a functional cluster in an array could be 
to mimic a CA rule.  At a higher hierarchical level, supercells of different CA-like 
rules could then be used as building blocks in a non-uniformly coupled CA array.  
Again, at this level, we need a useful set of tools to find useful emergent 
computational properties of the array.  As a simple illustrative example of non-
uniform coupling, consider a three-unit CA block with circular boundary conditions.  
It appears that we can implement any periodic pattern with T ≤ 8, as long as no 
word is repeated twice in the sequence.  Designing such a trio is not too hard.  For 
example, coupling CA rules, – 108 – 102 – 51 –, in this way yields a three-bit binary 
counter.  Specifically, the new rule on the three bits is: ‘Count to the next integer, 
(mod 8).’  However, the aforementioned example is not really exemplary of the 
desired result of this project, because the trio does not use anything other than local 
information, and does not exploit the computational powers of wild boundary 
conditions.  Drastically more interesting behavior should be possible for larger non-
uniform CA arrays.  As a proven example, nearest-neighbor non-uniformly coupled 
CA have been evolved to outperform the best possible nearest-neighbor uniformly 
coupled CA for the task of deciding whether or not the majority of initial cell values 
were 1’s [5].  The continued development of this project will contribute to the 
understanding of arrays with a small number of available components yet a large 
number of coupling constraints. 
 


