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Outline

How do Information-theoretic and CompMech-theoretic
quantities generalize in spatially extended systems?

— An overview of the strictly-spatial case

How spatial Information evolves in time
— Towards a Computational Mechanics for information processing

The big picture: How space and time are intricately connected,
spacetime probability densities, and playing outside of your
light-cone.



Rethinking the Basics for Spatially Extended Systems:
Block Entropies

H(L) = H(P(s") = - ) P(s")log, P(s")

st eA

*\What does this mean?
*What is the appropriate L for a system?
*What is st
*What is the alphabet?
How are the probabilities calculated?



Rethinking the Basics for Spatially Extended Systems:
Block Entropies

H(L) = H(P(s") = - ) P(s")log, P(s")

st eA

* In1D... options

» Consider the case of general dimensions (or
at least 2D...)

* What we should do for the 1D case will
follow out as a special case



Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for L = 1

e | =1 considers the
value lone cells

H(L) = H(P(sY)) = —EP(SL)logZP(SL)



Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for L = 1

® | =1 considers the value lone
cells

But P(s) is taken from the
statistics of the whole array

* S0, scan this template
across the whole array
to find P(s)!

H(L) = H(P(sY)) = —EP(SL)logZP(SL)

st eA
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Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for L = 1

® | =1 considers the value lone
cells

But P(s) is taken from the
statistics of the whole array

* S0, scan this template
across the whole array
to find P(s)! 3

H(L) = H(P(sY)) = —EP(SL)logZP(SL)

st eA



Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for L = 2

« L =2 template
depends on geometry
of coupling (assumed
or explicit)

* The case shown is for
four nearest neighbors

H(L) = H(P(s") = - Y P(s")log, P(s")




Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for L = 2

* L = 2 template depends on
geometry of coupling (assumed

or explicit)

-But again, P(s,s,) is taken
from the statistics of the
whole array, so we scan
this template across the
whole array to find P(s,,s,).

* Notice that s, is no longer
binary!

s, €{0,1} but s, €{0,1,2,...2" -1}
H(L) = H(P(GY) = —EP(SL)logzP(sL)



Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) forL = 3

* L = 3 template expands
naturally from previous geometry

* We scan this template across
the whole array to find P(s,,s,,S;).

» We have a different alphabet for
different L. In general:

L-1 (6k0+2Dk(D—1))
: )} ’
—coupling k=0

for number of intrinsic states per
cell, n, and coupling number
(number of nearest neighbors),
NC.

length{ A(L,,

H(L) = H(P(s") = - P(s")log, P(s")



Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for L =4

* L =4 template expands
naturally from previous geometry

* We scan this template across
the whole array to find P(s,,s,,s;

S4)-
» We have a different alphabet for
different L.:
L-1 (6k’0+2D k(D—l))
length{A(L,, )} = Hk=0{n

for number of intrinsic states per
cell, n, and coupling number

(number of nearest neighbors),
Ng H(L) = H(P(s") = - ) P(s")log, P(s")




Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for any L

* We scan every L-template across the whole array to find
P(sb).

*Special considerations for boundary conditions?

H(L) = H(P(s")) = - P(s")log, P(s")

stea



Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for any L

* We scan every L-template
across the whole array to find

P(sb).
*Special considerations for
boundary conditions?

* H(L) saturates at L = n+m-1
for nxm array

H(L) = H(P(s")) = - P(s")log, P(s")
e.g.
3x2 array.

All cells are seen by
every other cell at L = 4.

lim lim
hu (L)} = L s OO{H(L) - H(L - 1)} = L {Hsaturation - Hsaturation} = O ?
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Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for any L

* We scan every L-template
across the whole array to find

P(sb).
*Special considerations for
boundary conditions?

* H(L) saturates at L = n+m-1
for nxm array

H(L) = H(P(s")) = - P(s")log, P(s")
e.g.
3x2 array.

All cells are seen by
every other cell at L = 4.

lim

L —- oo

lim lim
h {h.u (L)} = L —> 00 {H(L) - H(L - 1)} = L {Hsaturation - Hsaturation} = O ? H(Lsaturation) = E ?

Instead, define new quantities:

h'=h,(L,)=H(L,)-H(L,-1) ? E* =9

sat sat sat



Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for any L

* We scan every L-template

across the whole array to find
P(sh).

*Special considerations for
boundary conditions?

* H(L) saturates at L = n+m-1
for nxm array

*Just average over
possibilities?

H(L) = H(P(s") = - P(s")log, P(s")



Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L)

*Special considerations for
boundary conditions?
 Just average over
possibilities? Maybe.
Although care must be given
to pathological topologies...

H(L)

HP(sY)) = —EP(SL)logzP(sL)



Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L)

*Special considerations for

boundary conditions?
 Just average over
possibilities? Maybe.

Although care must be given
to pathological topologies...

H(L) = H(P(s") = - Y P(s")log, P(s")



Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for 1-D

® 1-Dimension as boundary condition

» We scan the natural L-templates across the whole linear
array to find P(s‘).

H(L) = H(P(s") = - Y P(s")log,P(s")



Rethinking Temporal Measurements for Spatially

Extended States: 1-D nearest neighbor CA
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Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA
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Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA
Starting Small: Rule 110 with only three cells in the array
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Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA
Starting Small: Rule 110 with only five cells in the array
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Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA
Starting Small: Rule 110 with only ten cells in the array



Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA
Starting Small: Rule 110 with only ten cells in the array




Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA
Starting Small: Rule 110 with only ten cells in the array
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Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA
Starting Small: Rule 110 with only ten cells in the array
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Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA
Looking Ahead: Rule 110
Impulse excitation for 3000 sites: CompMech quantities from a timeseries

Evolution of Computational Mechanics structural measures for rule 110
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Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA
Looking Ahead: Rule 110
Impulse excitation for 3000 sites: CompMech quantities from a timeseries

* The current methods/ algorithms are limited...
working on that

*There are many new questions to address

« Space and time probabilities are intricately
connected

Evolution of Computational Mechanics structural measures for rule 110
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Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA

« Some inspired new measures:
- Effective coupling length

*Helps to digitize rules of dynamic systems

« Exploring chiral rules

Evolution of Computational Mechanics structural measures for rule 110
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Statistical Complexity
—— Entropy Rate LR (-- for RL)
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