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Outline
• How do Information-theoretic and CompMech-theoretic

quantities generalize in spatially extended systems?
– An overview of the strictly-spatial case

• How spatial Information evolves in time
– Towards a Computational Mechanics for information processing

• The big picture: How space and time are intricately connected,
spacetime probability densities, and playing outside of your
light-cone.



Rethinking the Basics for Spatially Extended Systems:

Block Entropies

! 

H(L) = H(P(sL )) = " P(sL )log2 P(s
L )

s
L #A

$

•What does this mean?
•What is the appropriate L for a system?
•What is sL

•What is the alphabet?
•How are the probabilities calculated?
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• In 1D… options
• Consider the case of general dimensions (or
at least 2D…)

• What we should do for the 1D case will
follow out as a special case
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Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for L = 2

! 

H(L) = H(P(sL )) = " P(sL )log2 P(s
L )

s
L #A

$

• L = 2 template
depends on geometry
of coupling (assumed
or explicit)
• The case shown is for
four nearest neighbors



Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for L = 2

! 

H(L) = H(P(sL )) = " P(sL )log2 P(s
L )

s
L #A

$

• L = 2 template depends on
geometry of coupling (assumed
or explicit)

•But again, P(s1s2) is taken
from the statistics of the
whole array, so we scan
this template across the
whole array to find P(s1,s2).
• Notice that si is no longer
binary!

   but

! 

s
2
" {0,1,2,...,2

4
#1}

! 

s
1
" {0,1}



Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for L = 3

! 

H(L) = H(P(sL )) = " P(sL )log2 P(s
L )

s
L #A

$

• L = 3 template expands
naturally from previous geometry

• We scan this template across
the whole array to find P(s1,s2,s3).
• We have a different alphabet for
different L. In general:

for number of intrinsic states per
cell, n, and coupling number
(number of nearest neighbors),
NC.

! 

length{A(L
L
1"coupling

)} = n
(# k,0 +2D k (D"1) ){ }

k= 0

L"1

$



Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for L = 4

! 

H(L) = H(P(sL )) = " P(sL )log2 P(s
L )

s
L #A

$

• L = 4 template expands
naturally from previous geometry

• We scan this template across
the whole array to find P(s1,s2,s3,
s4).
• We have a different alphabet for
different L:

for number of intrinsic states per
cell, n, and coupling number
(number of nearest neighbors),
NC.

! 

length{A(L
L
1"coupling

)} = n
(# k,0 +2D k (D"1) ){ }

k= 0

L"1

$
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! 

H(L) = H(P(sL )) = " P(sL )log2 P(s
L )

s
L #A

$

• We scan every L-template across the whole array to find
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across the whole array to find
P(sL).

•Special considerations for
boundary conditions?

• H(L) saturates at L = n+m-1
for n x m array

! 

hµ =
lim

L"#
hµ (L){ } =

lim

L"#
H(L) $H(L $1){ } =

lim

L"#
H

saturation
$H

saturation
{ } = 0

e.g.
3 x 2 array:

All cells are seen by
every other cell at L = 4.

?

! 

H(L
saturation

) = E ?
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! 
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• We scan every L-template
across the whole array to find
P(sL).

•Special considerations for
boundary conditions?

• H(L) saturates at L = n+m-1
for n x m array

! 

hµ =
lim

L"#
hµ (L){ } =

lim

L"#
H(L) $H(L $1){ } =

lim

L"#
H

saturation
$H

saturation
{ } = 0

e.g.
3 x 2 array:

All cells are seen by
every other cell at L = 4.

?

Instead, define new quantities:
! 

H(L
saturation

) = E ?

! 

hµ

sat
" hµ (Lsat ) = H(L

sat
) #H(L

sat
#1) ?

! 

E
sat
" ?
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Rethinking the Basics for Spatially Extended Systems:

Block Entropies: H(L) for 1-D

! 

H(L) = H(P(sL )) = " P(sL )log2 P(s
L )

s
L #A

$

• 1-Dimension as boundary condition
• We scan the natural L-templates across the whole linear
array to find P(sL).

…

! 

"… … …



Rethinking Temporal Measurements for Spatially

Extended States: 1-D nearest neighbor CA
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Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA

Starting Small: Rule 110 with only three cells in the array

! 

"



Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA

Starting Small: Rule 110 with only five cells in the array

! 

"



Rethinking Temporal Measurements for Spatially Extended States:
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Starting Small: Rule 110 with only ten cells in the array
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Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA
Looking Ahead: Rule 110

Impulse excitation for 3000 sites: CompMech quantities from a timeseries



Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA
Looking Ahead: Rule 110

Impulse excitation for 3000 sites: CompMech quantities from a timeseries

• The current methods/ algorithms are limited…
working on that

•There are many new questions to address

• Space and time probabilities are intricately
connected



Rethinking Temporal Measurements for Spatially Extended States:
1-D nearest neighbor CA

• Some inspired new measures:

• Effective coupling length
•Helps to digitize rules of dynamic systems

• Exploring chiral rules


