Information Flow

Spencer Mathews

 ϵ -Transducers

Dynamics Single Stat

Soup Evolution

Channel Capacity

Partitioning

Metamachine

Conclusion

Towards a Theory of Information Flow in the Finitary Process Soup

Spencer Mathews

Department of Computer Science and Complexity Sciences Center University of California at Davis

June 1, 2010

Goals

Information
Flow

Spencer Mathews

 ϵ -Transducers

Dynamics Single State Soup Evolution

Channel Capacity

Partitioning

Metamachine

- Analyze model of evolutionary self-organization in terms of information flow.
- Measure channel capacity of elementary ϵ -Transducers.
- Develop functional partitioning based on this and language properties.

Outline

1

Information Flow

Spencer Mathews

 ϵ -Transducers

Dynamics Single State Soup Evolution

Channel Capacity

Partitioning

Metamachine

Conclusion

 $\epsilon\text{-}\mathsf{Transducers}$

Dynamics

Single State Soup

Evolution

3 Channel Capacity

4 Partitioning

5 Metamachine

ϵ -machines

Information Flow

Spencer Mathews

ϵ -Transducers

 ϵ -machines Defined 0

$$\mathcal{T} = \{ \boldsymbol{\mathcal{S}}, \boldsymbol{\mathcal{T}} \}$$

- S is a set of *causal states*
- ${\mathcal T}$ is the set of *transitions* between them: ${\mathcal T}^{(s)}_{ii},\;s\in {\mathcal A}$

ϵ -machine Properties

- All of their recurrent states form a single *strongly* connected component.
- Transitions are deterministic.
- S is *minimal*: an ϵ -machine is the smallest causal representation of the transformation it implements.

Transducers

Information Flow

Spencer Mathews

ϵ -Transducers

Dynamics Single Stat Soup

Channel Capacity

Partitioning

Metamachine

- We interpret the symbols labeling the transitions in the alphabet A as consisting of two parts: an *input symbol* that determines which transition to take from a state and an *output symbol* which is emitted on taking that transition.
- Transducers implement functions:
 - Character to character
 - Input string to output string
 - Map sets to sets (languages)

Set of Single State Machines

Transducer Composition

Information Flow	
Spencer Mathews	
ϵ -Transducers	
Dynamics	
Single State	Create new mapping, input language of one machine
Evolution	becomes input language of another
Channel	1 8 8
Capacity	Not commutative
Partitioning	Possible exponential growth in number of states.
B. A	

Interaction Network

Metamachine

Single State Transition Matrix

Information Flow															
Spencer	,														,
Mathews	T_1	T_2	T_3	T_0	T_1	T_2	T_3	T_0	T_1	T_2	T_3	T_0	T_1	T_2	T_3
	T_0	T_0	T_0	T_1	T_1	T_1	T_1	T_2	T_2	T_2	T_2	T_3	T_3	T_3	T_3
ϵ -Transducers	T_1	T_2	T_3	T_1	T_1	T_3	T_3	T_2	T_3	T_2	T_3	T_3	T_3	T_3	T_3
Dynamics	T_4	T_8	T_{12}	T_0	T_4	T_8	T_{12}	T_0	T_4	T_8	T_{12}	T_0	T_4	T_8	T_{12}
Single State Soup	T_5	T_{10}	T_{15}	T_0	T_5	T_{10}	T_{15}	T_0	T_5	T_{10}	T_{15}	T_0	T_5	T_{10}	T_{15}
Evolution	T_4	T_8	T_{12}	T_1	T_5	T_9	T_{13}	T_2	T_6	T_{10}	T_{14}	T_3	T_7	T_{11}	T_{15}
Channel	T_5	T_{10}	T_{15}	T_1	T_5	T_{11}	T_{15}	T_2	T_7	T_{10}	T_{15}	T_3	T_7	T_{11}	T_{15}
Capacity	T_0	T_0	T_0	T_4	T_4	T_4	T_4	T_8	T_8	T_8	T_8	T_{12}	T_{12}	T_{12}	T_{12}
Partitioning	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}	T_{11}	T_{12}	T_{13}	T_{14}	T_{15}
Metamachine	T_0	T_0	T_0	T_5	T_5	T_5	T_5	T_{10}	T_{10}	T_{10}	T_{10}	T_{15}	T_{15}	T_{15}	T_{15}
Conclusion	T_1	T_2	T_3	T_5	T_5	T_7	T_7	T_{10}	T_{11}	T_{10}	T_{11}	T_{15}	T_{15}	T_{15}	T_{15}
	T_4	T_8	T_{12}	T_4	T_4	T_{12}	T_{12}	T_8	T_{12}	T_8	T_{12}	T_{12}	T_{12}	T_{12}	T_{12}
	T_5	T_{10}	T_{15}	T_4	T_5	T_{14}	T_{15}	T_8	T_{13}	T_{10}	T_{15}	T_{12}	T_{13}	T_{14}	T_{15}
	T_4	T_8	T_{12}	T_5	T_5	T_{13}	T_{13}	T_{10}	T_{14}	T_{10}	T_{14}	T_{15}	T_{15}	T_{15}	T_{15}
	T_5	T_{10}	T_{15}	T_5	T_5	T_{15}	T_{15}	T_{10}	T_{15}	T_{10}	T_{15}	T_{15}	T_{15}	T_{15}	T_{15} /

Interaction Network

Single State Interaction Network ${\mathcal G}$

Population Dynamics

Information Flow	
Spencer Mathews	
ϵ -Transducers	
Dynamics	
Single State Soup	
Evolution	Population P
Channel	
Capacity	
Partitioning	
Metamachine	
Conclusion	

Population Dynamics

Information
Flow

Spencer Mathews

 ϵ -Transducers

Dynamics Single State Soup Evolution

Channel Capacity Partitionir

Conclusion

A single replication is determined through compositions and replacements in a two-step sequence:

(1) Construct ϵ -machine T_C by forming the composition $T_C = T_B \circ T_A$ from T_A and T_B randomly selected from the population and minimizing.

2 Replace a randomly selected ϵ -machine, T_D , with T_C . Note that there is no imposed notion of fitness nor spatial component.

Relaxation to Steady State (Single State Soup of Size 100,000)

Communication Channel

Channel Capacity

Information Flow

Spencer Mathews

 ϵ -Transducers

Dynamics Single State Soup Evolution

Channel Capacity

Partitionin

Metamachine

Conclusion

Cover and Thomas [Cover and Thomas, 2006] define the *channel capacity* of a discrete memoryless channel as:

$$C = \max_{p(x)} I(X; Y) \tag{1}$$

This capacity specifies the highest rate, in bits, at which information may be reliably transmitted through the channel, and Shannon's second theorem states that his rate is achievable in practice.

Mutual Information

Information Flow

Spencer Mathews

 ϵ -Transducers

Dynamics Single State Soup Evolution

Channel Capacity

Partitioning

Metamachine

Conclusion

Remember that **mutual information** is the reduction in uncertainty in one random variable due to knowledge of another.

$$I(X;Y) = H(Y) - H(Y|X)$$
⁽²⁾

Discrete Noiseless Channel

Information Flow	
Spencer Mathews	
ϵ -Transducers	
Dynamics	
Single State Soup Evolution	Discrete Noiseless Channel
Channel	• One to one correspondence between input and output
Capacity	symbols
Partitioning	Symbols
Metamachine	

Languages

Information Flow

Spencer Mathews

 ϵ -Transducers

Dynamics Single State Soup Evolution

Channel Capacity

Partitioning

Metamachine

Conclusion

Partitioning based on language ${\cal L}$

•
$$\mathcal{L}_{in} = \Sigma^*$$

•
$$\mathcal{L}_{out} = \Sigma^*$$

• union of these – possibility for positive channel capacity

Single State Channel Capacities

Machines of Maximal Channel Capacity

Partially Noisy Channels

Partially Noisy Channels

Single State Channel Capacities

Information Flow Spencer Mathews	Most a	ire zero, except for		
e-Transducers	:	Machine Number	Channel Capacity	P(X=1)
Single State Soup Evolution	-	6	1.0	0.5
Channel Capacity		7	0.32	0.6
Partitioning		9	1.0	0.5
Metamachine		11	0.32	0.6
Conclusion		13	0.32	0.4
		14	0.32	0.4

Meta-machines

Information Flow	
Spencer Mathews	
ϵ -Transducers	Meta-machine
Dynamics Single State Soup Evolution	 A set of machines that is closed and self-maintained under composition
Channel Capacity	• $\Omega \subseteq P$ is a meta-machine if and only if (i) $T_i \circ T_i \in \Omega$, for all $T_i, T_i \in \Omega$ and
Metamachine	(ii) For all $T_k \in \Omega$, there exists $T_i, T_j \in \Omega$, such that $T_k = T_i \circ T_i$.
Conclusion	• Captures notion of invariant set: $\Omega = \mathcal{G} \circ \Omega$

Single State Metamachine

Single State Metamachine

Summary

Information Flow

Spencer Mathews

 ϵ -Transducers

Dynamics Single State Soup Evolution

Channel Capacity

Partitioning

Metamachine

- Channel capacity is a function of machine structure.
- High channel capacity does not necessarily lead to persistence.
- All of the transducers in the single state meta-machine have zero channel capacity.
- Composition never increases channel capacity.

For Further Reading

