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Abstract

The Finitary Process Soup is a model of evolutionary self-organiza-
tion. The elementary particles of this system, ε-transducers, possess
well defined mathematical properties, thus permitting structural anal-
ysis on multiple scales. ε-Transducers are embodiments of communica-
tion channels, and their interactions occur via functional composition.
We thus explore the notion of information as currency in this system.
We characterize ε-transducers through their roles as channels, measur-
ing their channel capacity. We conclude that transducer composition
does can not increase channel capacity. We ask if, and how, channel
capacity may be used to understand the roles of transducers in emer-
gent autocatalytic networks, and arrive at the surprising result that
population dynamics favors transducers with channel capacity of zero.
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1 Introduction

The broader context for this work is within the population dynamics of the
Finitary Process Soup [2]. This evolutionary model, introduced below, en-
ables a mathematically tractable analysis of hierarchical self-organization. In
order to better understand the forces which drive self-organization, we seek
to devise a categorization of the first order elements within this model. The
hope is that we may begin to speak more broadly about classes of objects,
and interactions among these classes, instead of among individual objects
themselves — a dimensionality reduction, of sorts. This categorization will
help us to better understand the roles of individuals within the Finitary
Process Soup.

This project is but a step toward the larger goal of extending Computa-
tional Mechanics to ε-transducers and to explore the notion of information
flow in evolving networks of these machines. Prior to addressing flow in
networks, we must first quantify information flow in individual transducers.

ε-Transducers may be viewed through their dual roles as both communi-
cation channels and functional mappings capable of transforming the struc-
ture of their input. We will focus primarily on the former, and characterize
ε-transducers in the one state library in terms of their channel capacities,
as well as on their input and output languages. The impact of transducer
composition on channel capacity will be also examined.

We find that single state ε-transducers embody a diverse set of commu-
nication channels. The measure of channel capacity follows a certain algebra
over the composition operation. Surprisingly, however, a machine’s persis-
tence in an evolving population varies inversely with channel capacity.

2 Background

Before we report our results, some preliminary material will be reviewed.
We will first describe what we mean by a communication channel, and how
we can measure its capacity. Then, we will introduce ε-transducers as our
primary objets. We will go on to show how ε-transducers are naturally viewed
as communication channels. In the next section we will introduce dynamics
over transducers, and introduce the Finitary Process Soup more completely.
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2.1 Discrete Channels

We define a discrete channel [1] to be a system consisting of an input alphabet
X , an output alphabet Y , and a probability transition matrix p(Y |X) that
expresses the probability of observing the output symbol y given that we
send the symbol x. X and Y are finite sets, and entries in the matrix are
conditional probabilities. For every x and y, p(y|x) ≥ 0 and for every x∑

y p(y|x) = 1.
We commonly deal with memoryless channels, in which the probability

distribution of the output depends only on the input at that time and is
conditionally independent of previous channel inputs or outputs.

2.1.1 Channel Capacity

The channel capacity [1] of a discrete memoryless channel is:

C = max
p(x)

I(X;Y ) (1)

This capacity specifies the highest rate, in bits, at which information may be
reliably transmitted through the channel, and has the following properties:

C ≥ 0

C ≤ log |X | since C = max I(X;Y ) ≤ max H(X) = log |X |
C ≤ log |Y|

From its definition we can see that channel capacity is an optimization
problem over mutual information. The most natural formulation for our
purposes is:

I(X;Y ) = H[Y ]−H[Y |X] (2)

I(X;Y ) is a symmetric quantity, and a continuous function of p(x), although
in general there is no closed form solution for channel capacity.

2.2 ε-Transducers

We now move on to define the objects of our analysis, ε-transducers, and we
do so in terms of ε-machines. ε-Machines are minimal and maximally predic-
tive models of causal processes [3]. An ε-machine is defined as M = {S,T },
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where S is a set of causal states and T is the set of transitions between them,
with M

(s)
ij , s ∈ A. An ε-machines recurrent states form a single strongly con-

nected component, and transitions are unifilar (i.e. deterministic).
We formalize an ε-transducer as a reinterpretation of an ε-machine. It

is common to consider ε-machines over a binary alphabet. We consider an
ε-transducer to be an ε-machine over an extended alphabet of size |A|2. We
interpret the symbols labeling the transitions in the alphabet A as consisting
of two parts: an input symbol that determines which transition to take from
a state and an output symbol which is emitted on taking that transition.

We can think of transducers as implementing functional mappings on
several levels of interpretation. They map an input character to an output
character, as well as input strings to output strings. Associated with each
ε-transducer is a set of all possible input strings, its input language Lin, and
a set of all possible output strings, its output language Lout. The transducer
specifies a mapping between these sets, and is thus a compact representation
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Figure 1: The library of single state ε-machines
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of a mapping from one formal language to another.
As we continue in our discussion we will use the terms ε-transducer, ε-

machine, transducer, and machine interchangeably, in all cases referring to
ε-transducers.

The set of single state ε-transducers is illustrated in figure 1 .

2.2.1 Composition

Transducer composition provides a way of functionally coupling multiple ma-
chines, and is essential to the population dynamic described in the next sec-
tion. Composition creates a new mapping wherein the output string from
one machine Ti is taken as the input language of another Tj. The resulting
string reflects the combined processing of both transducers. If the machine
which implements this mapping is Tk, we write Tk = Tj ◦ Ti. It should be
noted that composition is not a symmetric operation..

The system of compositions between machines may be described with a
set of interaction matrices, G(k).

G(k)ij =

{
1 if Tk = Tj ◦ Ti
0 otherwise

A more compact description, requiring only a single matrix G, is given as:

Gij = Tk where Tk = Tj ◦ Ti




T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3

T0 T0 T0 T1 T1 T1 T1 T2 T2 T2 T2 T3 T3 T3 T3

T1 T2 T3 T1 T1 T3 T3 T2 T3 T2 T3 T3 T3 T3 T3

T4 T8 T12 T0 T4 T8 T12 T0 T4 T8 T12 T0 T4 T8 T12

T5 T10 T15 T0 T5 T10 T15 T0 T5 T10 T15 T0 T5 T10 T15

T4 T8 T12 T1 T5 T9 T13 T2 T6 T10 T14 T3 T7 T11 T15

T5 T10 T15 T1 T5 T11 T15 T2 T7 T10 T15 T3 T7 T11 T15

T0 T0 T0 T4 T4 T4 T4 T8 T8 T8 T8 T12 T12 T12 T12

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

T0 T0 T0 T5 T5 T5 T5 T10 T10 T10 T10 T15 T15 T15 T15

T1 T2 T3 T5 T5 T7 T7 T10 T11 T10 T11 T15 T15 T15 T15

T4 T8 T12 T4 T4 T12 T12 T8 T12 T8 T12 T12 T12 T12 T12

T5 T10 T15 T4 T5 T14 T15 T8 T13 T10 T15 T12 T13 T14 T15

T4 T8 T12 T5 T5 T13 T13 T10 T14 T10 T14 T15 T15 T15 T15

T5 T10 T15 T5 T5 T15 T15 T10 T15 T10 T15 T15 T15 T15 T15




Figure 2: Interaction matrix for the single state transducers.
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The transition matrix which describes compositions among single state
ε-transducers is shown in figure 2. A property unique to the set of single
state ε-transducers is that it is closed under composition.

2.3 Transducers as Channels

The set of single state ε-transducers are realizations of discrete, memoryless,
binary channels. Recall that, by definition, ε-transducers are unifilar over
their input|output pairs. That is, they need not be unifilar with respect to
their input or output alphabets alone, only over the Cartesian product of
these alphabets. This potential nondeterminism leads some ε-transducers to
behave as noisy channels.

Transition probabilities play an essential role in the functioning of ε-
machines proper. In our formulation of ε-transducers we neglected to clarify
the role of probability. In transducers which happen to be unifilar over their
input alphabet, probability is largely irrelevant since the input symbol plays
an equivalent role in specifying a transition. Probabilities only really assume
meaning when multiple outputs are possible given a single input. In this
case output symbols become a stochastic function of input. For simplicity,
we assume that the outputs are are all equally likely.

3 Dynamical System

Our system of focus is the Finitary Process Soup (FPS). The soup consists
of a population P of N ε-machines, and evolves through discrete replication
steps. The system’s large state space is described by N , the population size,
and a vector p of length N , where pi is the fraction of machine type i in the
population at a given time.

3.1 Soup Dynamics

The population dynamics of the Finitary Process Soup unfold in discrete time
steps. Interactions occur through composition, and in this way we conceive
of transducers transforming one another in the soup. A single replication is
determined through composition and replacement in a two-step sequence:

1. Construct ε-machine TC by forming the composition TC = TB ◦TA from
TA and TB randomly selected from the population and minimizing.
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Figure 3: Population dynamics of single state ε-machines starting from a
uniform distribution and population size 100,000.

2. Replace a randomly selected ε-machine, TD, with TC .

The population dynamics of a typical run of the single state is shown in
in figure 3. The relative abundance of each transducer type changes over
time until a steady state is reached.

3.2 Meta-Machines

While the FPS state space is large, the trajectory of a given population
through this state space tends to be quite specific. Population dynamics
lead it to spontaneously self-organize into stabilized auto-catalytic networks.
These networks reflect sets of ε-machines whose members recursively partic-
ipate in their own production.

A meta-machine captures the notion of invariant set, Ω = G ◦Ω, and is a
set of machines that is closed and self-maintained under composition. Ω ⊆ P
is a meta-machine if and only if

(i) Ti ◦ Tj ∈ Ω, for all Ti, Tj ∈ Ω and

(ii) For all Tk ∈ Ω, there exists Ti, Tj ∈ Ω, such that Tk = Ti ◦ Tj.
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The 9 transducers which persist in figure 3 form such a set in the single
state soup. Meta-machines are an emergent second order structure in the
Finitary Process Soup, and a significant goal of this project to understand
and characterize the forces which drive this spontaneous ordering.

4 Methods

The tasks of partitioning the set of ε-transducers and computing channel
capacity were both accomplished through the development of Python code.
Each ε-transducer was read in from a file and converted to a set of four
transition matrices — one for each input|output pair. Matrix M0 corresponds
to 0|0, M1 to 0|1, M2 to 1|0, and M3 to 1|1. Transition “probabilities” were
assigned by assuming a uniform probability over outgoing transitions.

A transducer’s input and output languages may be analyzed separately by
creating a new set of matrices concerned only with the respective alphabet.
We do this by summing the above mentioned matrices with shared input or
output symbols. For example, M0

in = M0 +M1 and M1
out = M1 +M3.

These matrices may be used to determine if a transducer accepts both
0 and 1 as input, and whether both 0 and 1 may be observed as output
for some input. Since channel capacity reflects a maximum over all possible
input distributions, if only a single symbols is acceptable as input there is
only one such distribution, no uncertainty, and thus no way for the channel
capacity to be anything but zero. When both 0 and 1 occur as possible input
symbols to a transducer, we say that Lin = Σ∗. We define the class Σ∗in as
the set containing all such transducers.

In order for a channel to have a non-zero channel capacity there must also
be some potential uncertainty regarding its outputs. Practically speaking,
this means that 0 and 1 must both be present as the output symbol on
some transition. When both 0 and 1 occur as output symbols, we say that
Lout = Σ∗. We define the class Σ∗out as the set containing all such transducers.

We define the class Σ∗ to be the set containing all transducers for which
all symbols are possible as both input and output. Thus, Σ∗ = Σ∗in ∩ Σ∗out.

The task of computing the channel capacity involves finding the maximum
mutual information over all input distribution. Each distribution requires a
new conditional probability matrix to be computed for each transducer. For
a binary channel, the input distribution varies with a single parameter p,
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where P (X = 1) = p and P (X = 0) = 1− p.
The values of H[X] and H[Y |X] required to compute I(X;Y ) both vary

with p, and are calculated from this conditional probability matrix.
Given the input distribution and the conditional matrix of the channel,

we may compute the marginal distribution of outputs through matrix mul-
tiplication as

P (Y ) = P̂ (X)[P (Y |X)]

where P̂ (X) is the probability distribution over inputs written as a row vec-
tor, and [P (Y |X)] is the conditional matrix described above.

The conditional entropy H[Y |X] is computed using the formula

H[Y |X] =
∑

x∈X

p(x)H[Y |X = x]

Python code as written to compute the mutual information for values of
p in the unit interval, in increments of 0.01.

5 Results

We present the results of our partitioning effort, first done in terms of lan-
guages, and then refined by channel capacity. The combination of the two
yield insight into the dynamics which drive the single state soup to its steady
state meta-machine.

5.1 Partitioning

As a first order of business before computing channel capacity, we parti-
tion the set of single state ε-transducers, based on their input and output
languages languages, into Σ∗in,Σ∗out, Σ∗. Transducers which only have single
arcs, and consequently fall into none of these categories, form an additional
class. Each machine type is associated with one of these sets:

5, 6, 7, 9, 10, 11, 13, 14, 15 ∈ Σ∗in
3, 6, 7, 9, 11, 12, 13, 14, 15 ∈ Σ∗out

6, 7, 9, 11, 13, 14, 15 ∈ Σ∗

1, 2, 4, 8 ∈ ‘single arcs’
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Figure 4: Mutual information as a function of p(X) of single state transduc-
ers.

There are several things to notice. As illustrated in figure 1, there is a
large degree of symmetry among machines. For each machine, with the ex-
ception of machine 15, there is a topologically equivalent transducer differing
only in that 0s and 1s are reversed. As we continue on to measure channel
capacity, we note that Σ∗ is the only class where channel capacity may be
nonzero.

5.2 Channel Capacities

We summarize our channel capacity results in figure 4. The plots illustrate
how the mutual information between input and output varies with input
distribution, with channel capacity being found at the maxima.

Quantitative results are summarized in table 1. Channel capacity values,
and the probability distributions at which they occur, induce a refinement
to our partitioning based on language.

All transducers which are not in the class Σ∗ have a channel capacity of
zero. All transducers in Σ∗, with the exception of machine 15, have a positive
channel capacity. We define this class as Σ∗

′
, where Σ∗

′
= Σ∗\T15. As a

channel with too much noise to transmit any useful information, machine 15
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Machine Number Channel Capacity P(X=1)

6 1.0 0.5
7 0.3219 0.6
9 1.0 0.5
11 0.3219 0.6
13 0.3219 0.4
14 0.3219 0.4

Table 1: Single state transducers with non-zero channel capacities.

defines its own class.
Within Σ∗

′
we may specify a further refinement. Machine 9 is the pro-

totypical discrete noiseless channel. Machine 6 flips input bits with perfect
fidelity, and may be interpreted as either a noiseless channel, or as binary
symmetric channel with a 100% error rate. Both of these transducers share
a mutual information curve (figure 5), and maximize channel capacity. They
are bitwise symmetric.

Transducers 7, 11, 13 and 14 share the common feature that one of their
input symbols transmits noiselessly, while the other is noisy in the sense
that it can result in multiple output symbols. We refer to these machines
as having a reduced capacity, since the channel capacities of these transduc-
ers is only 0.3219. Machines 7 and 11 (figure 6) all share their peak when
P (X = 1) = 0.6, whereas machines 13 and 14 (figure 7) both peak at 0.4.
The transducers in each pair have identical inputs, but their output bits
are flipped (transducers 7 and 14, 11 and 13 are topologically equivalent
with respect to their transitions, with the exception that all of their bits are
flipped).

In the case of these reduced capacity transducers, the maximal mutual
information of 0.3219 occurs at a distribution biased toward the noiseless
input. This leads to an output distribution of (0.8, 0.2) in favor of the output
symbol yielded by noiseless transmission. Thus H[X] = H(0.8) = 0.7219 and
H[Y |X] = 2

5
.

It should be noted that Shannon’s Second Theorem states that it is pos-
sible for a channel to achieve its channel capacity in practice. How to do
this is not always clear. The problem of constructing optimal codes for these
noisy transducers is an interesting one, but beyond the scope of this paper.
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Figure 5: Mutual information as a function of p(X) for transducers 6 and 9.
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Figure 6: Mutual information as a function of p(X) for transducers 7 and 11.
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Figure 7: Mutual information as a function of p(X) for transducers 13 and
15.

5.2.1 Composition

We investigate the interaction of channel capacity and composition. Specif-
ically, given two transducers of known channel capacity, we would like to
predict the channel capacity of their composition product. We find a regu-
larity in these interactions.

When transducers 6 and 9, those with channel capacity of 1, are self com-
posed or composed with each other, the resulting machine also has channel
capacity 1. Composition within this set of machine causes it to map back
on itself. When one of these two machines is composed with one of the re-
duced capacity machines, in either direction, the result is another reduced
capacity machine. When any of the reduced capacity machines is composed
to another from this set, the product is another reduced capacity machine or
machine 15, which has a capacity of zero.

Thus, the composition operation over the single state machines never
increases channel capacity. When two ε-transducers are composed to produce
a new transducer, the composition product will have a channel capacity either
the same or less than the parent with the least channel capacity.
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Figure 8: Partitioning based on input/output language and channel capacity.

5.3 Insights into Dynamics

The categories induced by differentiating among input and output language,
further refined by channel capacity, provide a coherent framework by which
to view the population dynamics of the single state soup. The categories
which are most useful for analysis are: (i) those with single arcs (ii) Σ∗in (iii)
Σ∗out (iv) T15 and (v) Σ∗

′
. For convenience we redefine our notation, and

consider Σ∗in and Σ∗out to only contain transducers not in Σ∗. The purpose is
to create disjoint sets.

The first thing to notice about this categorization is that all of these
classes, with the exception of Σ∗

′
, map completely back onto themselves.

Furthermore, they technically fulfill the definition of a meta-machine. Cer-
tain groupings of these sets are also closed and self maintained. Further ex-
perimentation is required to determine if a population containing just these
subsets will persist, or whether the dynamics will lead to the elimination of
some machines. The result is that it may be necessary to develop our notion
of meta-machine further by integrating a notion of stability.

The set of transducer in Σ∗
′
, those with positive channel capacity, form a

unique set for the purposes of analysis. The set is self reproducing and, addi-
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tionally, they produce machine 15, making them what we might term a leaky
meta-machine. Unlike any of the other partitions, they are not generated
through the interaction of any transducers not in that set, so it is perhaps
not surprising that they are eventually eliminated from the population, with
the remaining machines forming the observed meta-machine. Figure 8 sum-
marizes our partitioning, and the arrow illustrates the flow of probability
away from Σ∗

′
and into machine 15. This dynamic is visible in figure 3, as

machine 15 increases its presence in the population at the expense of these
machines.

We next give a broad overview of the composition dynamics between
these sets. Machine 15 is unique in being the only transducer with an input
and output language of Σ∗, yet with a channel capacity of zero. It serves a
mediator for the decay of machine’s in Σ∗

′
, but is also a player in the meta-

machine. Interactions involving machine 15 can lead to its self-reproduction
or to the production of machines in either Σ∗in or Σ∗out. Compositions involving
these latter sets either map back onto the set, produce machine 15, or produce
machines with single arcs. Compositions involving machines with single arcs,
regardless of their partner, produce machines in that set and in both Σ∗in and
Σ∗out.

We note that in a population, equilibrium is reached through reconcilia-
tion of the forces which serve to eliminate machines from the population, and
those which create them. Our transducer partitioning is a first step towards
a detailed understanding of these forces, and is achieve by defining a higher
level perspective on the transducers in the single state soup.

6 Conclusion

A partitioning of single state ε-transducers based on input and output alpha-
bets, coupled with measures of channel capacity, provides a useful framework
for understanding the population dynamics of the single state Finitary Pro-
cess Soup. In particular, a transducer’s channel capacity does not correlate
positively, as one might expect, with its persistence in a population. The
opposite is, in fact, true. The meta-machine which comes to dominate the
population consists entirely of transducers with zero channel capacity. It
would appear that this self-organization is driven by a force other than infor-
mation flow, and thus the resulting autocatalytic network is not quantifiable
in terms of channel capacity.
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The composition operation may be analyzed in terms of channel capacity.
Composition never increases channel capacity. In some cases it preserves
capacity, in some cases it reduces it.

It should be noted that these results apply to the single state soup. Future
work will seek to extend these results to understand the dynamics of multi-
state soups. Transducers with more than one state correspond to channels
with memory. This memory introduces a wealth of new theoretical and
practical issues. A property of multi-state transducers which makes them
of considerable interest is the fact that, unlike single state machines, they
have a positive structural complexity, Cµ. One wonders how channel capacity
varies with structural complexity, and whether the key results reported above
extend to the multi-state case.

One is tempted to ask how we can hope to understand information flow
in a network of machines with no channel capacity? Perhaps the answer will
come by considering what is flowing on these networks. It is not necessarily
codes which we are trying to communicate, it is symbols (in this case bits).
Thus, communication channels may not prove to be the best metaphor. We
would like to capture the fact that a simple transducer like machine 1 is
capable of transmitting the symbol 0 without interference, while machine 15
completely obfuscates its input. Electrical circuits as a metaphor may be a
fruitful approach.
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