An algebraic perspective on topological ϵ -machines

Luke Grecki lgrecki@math.ucdavis.edu

Graduate Group in Applied Mathematics

June 3, 2010

ション ふゆ マ キャット マックシン

- \blacksquare Algebraic decomposition of an $\epsilon\text{-machine}$
- Algebraic picture of possibility reduction
- Algebraic characterization of ϵ -machine optimality

うして ふゆう ふほう ふほう ふしつ

Semigroups

Definition

A semigroup is a pair $(\mathbf{S}, *)$ where

- **S** is a set
- $\blacksquare *: \mathbf{S} \times \mathbf{S} \to \mathbf{S}$ is a binary operation
- * is associative: a * (b * c) = (a * b) * c

Definition

An element $e \in S$ is an <u>identity element</u> if e * s = s * e = s for all $s \in S$.

うして ふゆう ふほう ふほう ふしつ

Definition

A <u>monoid</u> is a semigroup with an identity element.

Example 1: Free monoid

Alphabet: \mathcal{A}

Set of words: \mathcal{A}^*

<u>Free monoid on \mathcal{A} </u>: $\mathbf{M} = (\mathcal{A}^*, *)$

• * is word concatenation

 $x_0 \cdots x_m * y_0 \cdots y_n = x_0 \cdots x_m y_0 \cdots y_n$

• empty word λ is the identity element

 $\lambda \ast w = w \ast \lambda = w$

・ロト ・ 四ト ・ ヨト ・ ヨー ・ つへぐ

Example 2: $\mathbf{PF}(X)$

Monoid of partial functions on X: (**PF**(X), \circ)

 \blacksquare \circ is restricted function composition

$$(f\circ g)(x)=y\iff f(g(x))=y$$

• Identity function $1_X(x) = x$ is the identity element

$$1_X \circ f = f \circ 1_X = f$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Topological ϵ -machines

Definition

A topological ϵ -machine \mathcal{M} is a 3-tuple $(\mathcal{S}, \mathcal{A}, T)$ where

- $\blacksquare \mathcal{S}$ is a set of states
- $\blacksquare \mathcal{A}$ is an output alphabet
- $T: \boldsymbol{\mathcal{S}} \times \mathcal{A}^* \to \boldsymbol{\mathcal{S}}$ is a transition (partial) function

うして ふゆう ふほう ふほう ふしつ

• \mathcal{M} is connected and non-halting.

Notation: $T(\mathcal{S}, w) = \mathcal{S}T^w$

Monoid of a machine (via word equivalence)

Start with the free monoid \mathcal{A}^* . Define an equivalence relation on words:

$$u \sim w \iff T^u = T^w$$

うして ふゆう ふほう ふほう ふしつ

Definition

The monoid $\mathbf{M}(\mathcal{M})$ of a machine \mathcal{M} is (M, *) where

$$M = \mathcal{A}^* / \sim = \{ [w] \mid w \in \mathcal{A}^* \}$$
$$[u] * [w] = [uw]$$

$$\bullet \ [\lambda] * [w] = [w] * [\lambda] = [w]$$

Monoid of a machine (via transformations)

Definition

The monoid $\mathbf{M}(\mathcal{M})$ of a machine \mathcal{M} is (M, *) where

$$\bullet \ M = \{T^w \mid w \in \mathcal{A}^*\}$$

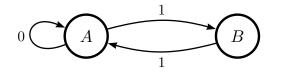
$$\bullet T^u * T^w = T^{uw} = T^u \circ T^w$$

$$T^{\lambda} * T^{w} = T^{w} * T^{\lambda} = T^{w}$$

The two monoids are isomorphic through $[w] \mapsto T^w$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Example



*	λ	1	0	01	10	010	101
$\overline{\lambda}$		1					
1	1	λ	10	101	0	010	01
0	0	01	0	01	010	010	010
01	01	0	010	010	0	010	01
10	10	101	10	101	010	010	010
010	010	010	010	010	010	010	010
101	101	10	010	010	10	010	101

Table: Multiplication table of $\mathbf{M}(\mathcal{M})$

æ

Forbidden words and zeros

Definition

An element z in a semigroup **S** is a <u>zero</u> if for all $s \in \mathbf{S}, z * s = s * z = z$.

Definition

A word w is a <u>forbidden word</u> if $T^w = 0_{\mathcal{S}}$.

Proposition

¹If the set of forbidden words is nonempty it is equal to the unique zero of $\mathbf{M}(\mathcal{M})$. If there are no forbidden words then $\mathbf{M}(\mathcal{M})$ does not contain a zero.

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 三臣 - の�@

¹True with the addition of one condition

Idle words and identity elements

Definition

A word w is an <u>idle word</u> if $T^w = 1_{\mathcal{S}}$.

Proposition

The set of idle words is equal to the unique identity element of $\mathbf{M}(\mathcal{M})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Synchronizing words and ideals

Definition

A word w is a synchronizing word if $|\mathcal{S}T^w| = 1$.

Definition

A set I of a semigroup **S** is an <u>ideal</u> if for all $s \in \mathbf{S}$, $sI \subseteq I$ and $Is \subseteq I$.

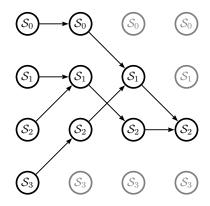
Proposition

Define

$$I_{\mathcal{M}} \equiv Sync(\mathcal{M}) \bigcup Forbid(\mathcal{M}) \qquad I_{\mathbf{M}(\mathcal{M})} \equiv \pi(I_{\mathcal{M}})$$

where π is the projection map $\pi(w) = [w]$. Then $I_{\mathcal{M}}$ is an ideal of \mathcal{A}^* and $I_{\mathbf{M}(\mathcal{M})}$ is an ideal of $\mathbf{M}(\mathcal{M})$.

Synchronization



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Inert words and filters

Definition

Let $|\mathcal{M}| = n$. A word w is an <u>inert word</u> if $|\mathcal{S}T^w| = n$.

Definition

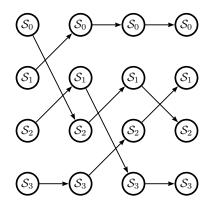
A subset F of a language \mathcal{L} is called a <u>filter</u> if F is closed under taking subwords.

うして ふゆう ふほう ふほう ふしつ

Proposition

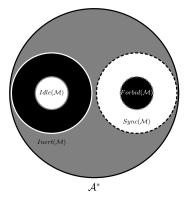
The set of inert words is a filter of \mathcal{A}^* .

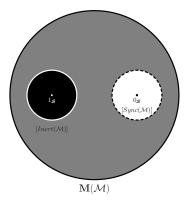
Inert transformation



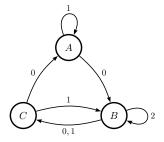
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

An algebraic picture





Example



word set	contains
$Forbid(\mathcal{M})$	$\{*202^*\}$
$Sync(\mathcal{M})$	$\{*2^*\}$
$Idle(\mathcal{M})$	$\{(000)^n\}$
$Inert(\mathcal{M})$	$\{0,1\}^*$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Monoid hierarchy

- Q: What about the gray monoid stuff?
- A: Can be filled in with a hierarchy of words.
 - Organized by the degree to which they reduce uncertainty.

うして ふゆう ふほう ふほう ふしつ

- Result: A new picture of synchronization.
- Check out written report.

Future directions

- **1** Consider the probabilistic monoid of the full ϵ -machine.
- 2 Algebraically characterize the optimality of ϵ -machines.

うして ふゆう ふほう ふほう ふしつ

3 Approach to hierarchical ϵ -machine reconstruction.