
An algebraic view of topological �-machines

Luke Grecki
Graduate Group in Applied Mathematics

lgrecki@math.ucdavis.edu

June 8, 2010

1

Contents

1 Semigroups 3

2 Semigroups of automata 4

3 �-machine words and monoid structures 5
3.1 Forbidden words and zeros . 6
3.2 Idle words and identity elements . 7
3.3 Synchronizing words and ideals . 7
3.4 Inert words and filters . 8
3.5 An algebraic picture . 10
3.6 An example . 11

4 Algebraic levels and possibility reduction 11
4.1 Word hierarchies . 12
4.2 Synchronization . 13

5 Conclusion 14

Abstract

In algebraic automata theory(AAT), automata are represented as algebraic objects, and
algebraic methods are used to characterize them. In this paper we use the basic ideas of AAT to
construct a new perspective on topological �-machines. In our first section we define the algebraic
structure of a semigroup and briefly review some ideas used in the study of semigroups. We then
introduce the basic concept of AAT, the semigroup of an automaton, and give some examples
to illustrate this idea. In our third section we make a correspondence between special sets of
�-machine words and algebraic structures in its semigroup, which allows us to form an algebraic
picture of the �-machine. In our fourth section we extend the picture of the previous section by
introducing hierarchies of words, which allows us to represent the process of synchronization in
a new way. In our final section we summarize and point out directions for future work.

2

1 Semigroups

Semigroups are among the simplest structures studied in algebra. They arise frequently in modern
mathematics and are fundamental objects in algebraic automata theory.

Definition 1. A semigroup is a tuple (S, ·) where S is a set and · is a binary operation on S. This

operation is closed, so for any two elements s and t in S we have s · t ∈ S. It is also associative,

so the identity a · (b · c) = (a · b) · c holds.

To keep the notation simpler we will sometimes write s · t as st, and refer to S as the semigroup
when the operation is understood.

An element e ∈ S is called an identity element if se = es = s for all s ∈ S. If an identity el-
ement exists it must be unique. For if e and e

� are two identity elements we have e = ee
� = e

�. By
requiring that a semigroup contain an identity element we get a slightly more complex algebraic
structure.

Definition 2. A monoid is a semigroup that contains an identity element.

We will now consider some important examples of these two structures.

Example 1. Let Σ be a non-empty set. A string or a word over Σ is any finite sequence of

elements from Σ. Denote the set of all words by Σ+. We can define a binary operation on Σ+ by

concatenating words. That is, if σ0 . . .σm and σ
�
0 . . .σ

�
n are in Σ+, we define

σ0 . . .σm · σ�
0 . . .σ

�
n ≡ σ0 . . .σmσ

�
0 . . .σ

�
n

One can check that Σ+ is a semigroup with respect to this operation. By adding the empty word λ

to Σ+ we get Σ∗, where concatenation with λ is defined by w ·λ = λ ·w = w for w ∈ Σ∗. Then λ is

an identity element and Σ∗ is a monoid. Σ+ and Σ∗ are called the free semigroup and free monoid

on Σ.

Example 2. Let X be a non-empty set and denote the set of all partial functions from X to X by

PF(X). We can define a binary operation on PF(X) by restricted function composition:

(f · g)(x) = y ⇐⇒ f(g(x)) = y

Under this definition f · g is undefined if g(x) is undefined or if f(g(x)) is undefined, so f · g
is a partial function. One can check that the operation is associative, and hence PF(X) is a

semigroup with this operation. In addition, PF(X) contains the identity function 1X , which satisfies

f · 1X = 1X · f = f for all f ∈ PF(X). Therefore PF(X) is also a monoid.

In group theory Cayley’s theorem states that every group can be realized as a permutation
group. In other words, every group can be realized as a closed collection of invertible functions
from a set to itself. Similarly, any semigroup can be realized as a closed collection of functions from
a set to itself. The latter structure is known as a transformation semigroup.

Definition 3. A transformation semigroup is a pair (X,S) where X is a set and S is a semigroup.

There is an action of S on X, which is a binary function X ×S → X denoted by x · s. This action

satisfies the following two conditions:

3

1. (x · s) · t = x · (st)

2. x · s = x · t for all x ∈ X implies s = t

The first condition requires that the action be compatible with the semigroup structure of S. The

second condition is that the action is faithful, so that each distinct element in S defines a unique

transformation of X. From now on we will denote x · s by xs, relying on context to distinguish the

action of S on X from the semigroup operation on S.

To finish this section we define ideals, congruence relations, and quotient semigroups.

Definition 4. A subset I of a semigroup S is called an ideal if sI ⊆ I and Is ⊆ I for all s ∈ S.

Definition 5. Let S be a semigroup. A congruence relation on S is an equivalence relation ∼ that

is compatible with multiplication in S:

s ∼ t ⇒ us ∼ ut and su ∼ tu ∀u ∈ S

Definition 6. Let S be a semigroup and ∼ be a congruence relation on S. Denote the set of all

equivalence classes of S by S/∼. Define a multiplication on S/∼ by:

[s] ∗ [t] = [st]

We call (S/∼, ∗) the quotient semigroup of S with respect to ∼.

2 Semigroups of automata

In this section we will see how to associate semigroups to automata. In fact we will associate
semigroups to semiautomata, but informally we will just talk about automata. Before introducing
these semigroups we review the definition of a semiautomaton.

Definition 7. A semiautomaton is a triple (Q,Σ, T) where Q is a non-empty set called the set of

states, Σ is a non-empty set called the input alphabet, and T is a partial function T : Q× Σ → Q

called the transition function.

It will be useful to consider the state mapping Tσ : Q → Q induced by a symbol σ ∈ Σ. This
mapping is defined by

qTσ = T (q,σ)

for all q ∈ Q. We can straightforwardly extend this to consider the state mapping Tw induced by
a word w = σ1 . . .σk ∈ Σ+:

qTw = qTσ1 . . . Tσk

To obtain the semigroup of an automaton we group words that induce equivalent state transfor-
mations. Let u and w be in Σ+. Define an equivalence relation ∼ on Σ+ by:

u ∼ w ⇐⇒ Tu = Tw (2.1)

One can verify that ∼ is a congruence relation on Σ+. By taking the quotient of Σ+ by ∼ we
get the semigroup of the automaton.

4

Definition 8. Let M = (Q,Σ, T) be a semiautomaton. The semigroup of M is S(M) ≡ Σ+
/∼,

where ∼ is defined by (2.1). By including the empty word λ and defining its induced state transfor-

mation as Tλ = 1Q we can define1 the monoid of M as M(M) ≡ Σ∗
/∼, where ∼ is extended to

Σ∗ in the natural way.

By construction each element of S(M) corresponds to a unique state transformation. Because
of this we can define S(M) in an alternate (but equivalent) way by considering the state transfor-
mations directly.

Definition 9. Let M = (Q,Σ, T) be a semiautomaton. The semigroup of M is S(M) ≡ {Tw | w ∈
Σ+} with the binary operation given by function composition:

Tu ∗ Tw = Tuw

The mapping [w] �→ Tw is an isomorphism between the two different representations of S(M).
Thus we can consider elements of S(M) either as equivalence classes of words or as state transfor-
mations, and in the following we will freely switch between these two representations.

Intuitively, S(M) is a representation of the computation of M. It encodes how the state
transformations of M depend on its input string. It does so abstractly, without any reference to
the states of M. To illustrate these concepts we now consider some examples.

Example 3. Let Q = {A}, Σ = {0, 1}, and T (A, 0) = T (A, 1) = A. The semigroup S(M) is

trivial, and contains just a single element corresponding to the identity transformation.

Example 4. Let Q = {q0, q1}, Σ = {0, 1}, with the transition function specified by Figure 1.

q0 q1

1

1

0

Figure 1: A two state automaton with a two letter alphabet.

The monoid M(M) has 7 elements, and we can describe it using Table 1. We notice the element

[010] has the special property that [010] ∗ [w] = [w] ∗ [010] = [010] for all [w] ∈ M(M), and we say

that it is a zero element. In general, an element z in a semigroup S is a zero element, or simply a

zero, of S if z · s = s · z = z for all s ∈ S. Note that if a semigroup has a zero element then, just

as in the case of an identity element, this element must be unique.

The word 010 does not induce any valid state transformation, so T010 is just the empty function

0Q : ∅ → Q. Since we always have 0Q · Tw = Tw · 0Q = 0Q we see that any forbidden input word

must be a zero of M(M). We explore this and similar observations in the next section.

3 �-machine words and monoid structures

In this section we will be considering topological �-machines, and treating them as automata in the
sense above. This allows us to associate a monoid2 to an �-machine. We will show that certain

1In some cases S(M) will already be a monoid, so one does not need to add the empty word to give it this
structure.

5

* λ 1 0 01 10 010 101
λ λ 1 0 01 10 010 101
1 1 λ 10 101 0 010 01
0 0 01 0 01 010 010 010
01 01 0 010 010 0 010 01
10 10 101 10 101 010 010 010
010 010 010 010 010 010 010 010
101 101 10 010 010 10 010 101

Table 1: Multiplication table of M(M) for Example 4

special sets of �-machine words correspond to algebraic structures in the monoids A∗ and M(M).
Together, these correspondences form a new picture of an �-machine.

It is important to note that what we called input words above are now to be interpreted as
output words of the �-machine. To be consistent with the computational mechanics literature we
will now use S to denote the set of states, S to denote a particular state, and A to denote the
output alphabet. We start by clarifying what we mean by a topological �-machine.

Definition 10. A topological �-machine is a semiautomaton (S,A, T) that has the following prop-

erties:

1. (Connected) For any two states S and S � there exists a word w ∈ A∗ such that STw = S �

or S �
Tw = S.

2. (Non-halting) For any state S there exists a letter x ∈ A such that STx is defined.

Note that unifilarity is automatically guaranteed by defining the topological �-machine as a
semiautomaton.

3.1 Forbidden words and zeros

A forbidden word is a word that can never be generated by the �-machine. Alternatively, we can say
that a forbidden word does not induce any state transformation. Focusing on this latter perspective,
we say that a word w ∈ A∗ is a forbidden word if Tw = 0S . It is clear that forbidden words can
be extended and the result is still a forbidden word. Using this property we can characterize the
forbidden words in terms of M(M). Before we state this result we need one definition.

Definition 11. Let M be a topological �-machine. A state S is called a sink state if STw = S for

all Tw, i.e. the only transition from S is a self-loop.

Proposition 1. Let M be a topological �-machine with no sink states. If the set of forbidden words

is nonempty it is equal to the unique zero of M(M). If there are no forbidden words then M(M)
does not contain a zero.

2When one has a finite �-machine its monoid can also be realized as the monoid generated by its topological
symbol transition matrices, with the empty word λ corresponding to the identity matrix. Whenever possible we will
not use these matrices, so that our results apply to infinite �-machines as well.

6

Proof. First we assume that the set of forbidden words is nonempty and so contains at least one
word z. We mentioned above that if a zero exists it must be unique, so we just have to show that
the set of forbidden words is equal to a zero of M(M). Since z is forbidden we know Tz = 0S . By
definition, the equivalence class [z] contains exactly those words z� for which Tz� = Tz = 0S , so [z]
must be equal to the set of forbidden words. The unique transformation 0S specified by [z] satisfies
0S · Tw = Tw · 0S = 0S for all Tw, which implies that [z] is a zero of M(M).

Now suppose there are no forbidden words. We assume for a contradiction that [w] is a zero of
M(M). Since w is not a forbidden word Tw is not the empty function, and there exists a state S
in the domain of Tw. Let S � = STw. Since M is a topological �-machine it is non-halting, so there
exists a Tu such that S �

Tu is defined. Furthermore, the state S � cannot be a sink state, so we can
assume that S �

Tu = S �� �= S �. But because [w] is a zero we must have S �� = STwTu = STw = S �,
which is a contradiction.

3.2 Idle words and identity elements

Idle words complement forbidden words. Whereas no state transformations correspond to forbidden
words, only the identity state transformation is induced by idle words. More concisely, we say that
a word w ∈ A∗ is an idle word if Tw = 1S . Note that by definition λ is an idle word. The following
proposition about idle words follows directly from our definition.

Proposition 2. Let M be a topological �-machine. The set of idle words is equal to the unique

identity element of M(M).

3.3 Synchronizing words and ideals

Seeing a synchronizing word allows one to know exactly the current state of the �-machine. In
other words, every synchronizing word corresponds to a state transformation that sends all states
to a single state. We call state transformations of this form reset transformations.

Definition 12. A state transformation Tw : S → S is called a reset transformation if |STw| = 1.

Using this definition we say that a word w ∈ A∗ is a synchronizing word if Tw is a reset
transformation, and denote the set of synchronizing words of a machine M by Sync(M). The
transformation corresponding to a synchronizing word is depicted in Figure 2. Just like for forbidden
words, one can extend a synchronizing word and the result (if not forbidden) is still a synchronizing
word. We state this algebraically in the following proposition.

Proposition 3. Let M be a topological �-machine (or any semiautomaton). Define

IM ≡
�
Sync(M)

�
[0S] if 0S ∈ M(M)

Sync(M) otherwise

IM(M) ≡ π(IM)

where π : A∗ → M(M) is the canonical projection map given by π(w) = [w]. Then IM is an ideal

of A∗ and IM(M) is an ideal of M(M).

7

S0

S1

S2

S3

S0

S1

S2

S1

S2 S2

S3

S0

S3

S0

S1

S3

Figure 2: The process of synchronization. Let w = x0x1x2 be the synchronizing word. The
transitions between the ith and (i + 1)th columns correspond to seeing the ith letter xi of the
synchronizing word. The total transformation Tw is a reset transformation sending every state to
S2. Note that one could extend the word in either direction and obtain the same structure as long
as the new word is not forbidden.

Proof. We start by proving that IM is an ideal of A∗. Let w ∈ IM and u ∈ A∗. We must show
that uw and wu are also in IM. If w ∈ [0S] then uw,wu ∈ [0S] because [0S] is a zero of M(M).
Now assume w ∈ Sync(M). Examining the cardinalities of the relevant transformations we see

|STuw| = |(STu)Tw| ≤ |STw| = 1

which implies that Tuw is either a reset transformation or 0S , and hence shows uw ∈ IM. For the
word wu we can again examine cardinalities

|Twu(S)| = |(STw)Tu| ≤ |STw| = 1

The inequality follows from the fact that the cardinality of the image of a function can never be
greater than the cardinality of its domain. Therefore we have wu ∈ IM.

To prove that IM(M) is an ideal of M(M) we note that π is a surjective monoid homomorphism.
These maps send ideals to ideals, which immediately implies that IM(M) is an ideal of M(M).

At the lowest level, the sets IM and IM(M) are made up of the same words. The difference
being that in IM(M) the synchronizing words are grouped according to the state they synch to (and
the forbidden words are grouped together as well).

3.4 Inert words and filters

In contrast to synchronizing words, inert words preserve uncertainty instead of eliminating it.
Starting with a uniform probability distribution over states, seeing an inert word will leave one

8

with a uniform distribution over states. In order to avoid an overlap of probability mass these
transformations must send each state to a distinct state. In light of this, we say that a word
w ∈ A∗ is an inert word if Tw is a permutation, and denote the set of all inert words of M by
Inert(M). We depict a transformation corresponding to an inert word in Figure 3.

S0

S1

S2

S3

S0

S1

S2

S1

S2 S2

S3

S0

S3

S0

S1

S3

Figure 3: An inert transformation. The transitions are to be interpreted in the sense of Figure
2. We see that the total transformation Tw is a permutation of the states, which implies it will
preserve a uniform probability distribution over states. Note that each sub-transformation is a
permutation as well.

We observe that an inert word can be extended by another inert word, and the result is again an
inert word. In the case of finite machines we additionally notice that Tw can only be a permutation
if every sub-transformation is a permuation as well. This is the only way to guarantee that there
is no collapse of states that would result in an overlap of probability mass. We describe these facts
algebraically below.

Definition 13. A subset F of a language L is called a filter if F is closed under taking subwords.

Proposition 4. Let M be a topological �-machine (or any semiautomaton). Then Inert(M) is a

submonoid of A∗ and π(Inert(M)) is a submonoid of M(M). If M is finite then Inert(M) is a

filter of A∗.

Proof. Let u,w ∈ Inert(M). Then by definition Tu and Tw are permutations. Since the composi-
tion of two permutations is a permutation, Tuw must also be a permutation. Hence uw ∈ Inert(M).
Furthermore, Tλ = 1S is a permutation, which implies that Inert(M) is indeed a submonoid of
A∗.

To see that π(Inert(M)) is a submonoid of M(M) we recall that the projection π is a monoid
homomorphism. Since monoid homomorphisms send submonoids to submonoids, we can immedi-
ately conclude the desired result.

9

Finally, we show that if M is finite then Inert(M) is a filter of A∗. We prove the result in cases.

Case 1: w = xy

By definition Tw = TxTy is a permutation, meaning that it is a bijection. This implies that Tx

must be injective and Ty must be surjective. The domain and codomain of all these functions is the
same finite set S, and in this situation being injective or surjective is equivalent to being bijective.
Therefore Tx and Ty are also permutations and the subwords x and y are in Inert(M).

Case 2: w = xyz

By factoring w as w = (xy)z the above implies that xy, z ∈ Inert(M). Applying the same
result to xy we get that x, y ∈ Inert(M). Since y is a general subword the proof is complete.

In some setups the set of inert words is generically trivial. If w ∈ Inert(M) and M is finite
then Proposition 4 says all subwords of w are also in Inert(M). In particular, this implies that all
the letters of w are inert words. If A is a binary alphabet and w contains a 0 and a 1, then all the
letters of A are inert words. Since the inert words are closed under composition this implies that
every word is an inert word. Thus the set of inert words is either mostly uninteresting or is all of
A∗. One has to go to larger alphabets for Inert(M) to have more complex structure3.

Considering Proposition 3 and Proposition 4 together we notice that the synchronizing words
and inert words are dual, with Sync(M) being closed under word extension and Inert(M) being
closed under word reduction. We return to this type of symmetry in Section 5.

3.5 An algebraic picture

Our results in this section allow us to form a new picture of the �-machine in terms of the monoids
A∗ and M(M), which we give below in Figure 4.

A∗

Inert(M)

Idle(M)

Sync(M)

Forbid(M)

M(M)

[Inert(M)]

1S

[Sync(M)]

0S

Figure 4: The monoids A∗ and M(M). A solid boundary indicates that the set is a submonoid
while a dashed boundary means that it is an ideal. In the diagram for M(M) the notation [W] is
short for π(W).

3The fact that Inert(M) claims all words composed of certain letters also creates a tension between the size of
Sync(M) and the size of Inert(M).

10

3.6 An example

Consider the machine depicted in Figure 5.

A

BC

0

0, 1

1

0

2

1

Figure 5: A 3 state topological �-machine with a 3 letter alphabet.

By making some simple observations we can find some of the words in the sets shown in Figure
4. First of all, we notice that T0 and T1 are permutations, which means that 0 and 1 are inert
words. By Proposition 4 we then know that all words containing only 0s and 1s must be inert words
as well. Next, we observe that seeing a 2 allows us to know with certainty that we are in state B.
Using Proposition 3, we can conclude that any word containing a 2 is either a forbidden word or
a synchronizing word. Lastly, we note that both the set of forbidden and idle words is nonempty.
For example, any word containing 202 is forbidden and the word 000 is idle. Therefore every set
in Figure 4 is nonempty. We summarize these observations below in Table 2.

word set contains
Forbid(M) {*202*}
Sync(M) {*2*}
Idle(M) {(000)n}
Inert(M) {0, 1}∗

Table 2: Distinguished words of the machine in Figure 5.

4 Algebraic levels and possibility reduction

In this section we extend the algebraic picture of Figure 4, filling in the mysterious grey area between
the sets shown there. We consider two hierarchies of sets of words, each of which is characterized by
the state collapse induced by its transformations. The sets we have previously considered appear
as levels in these hierarchies, and the levels between them fill in our previous algebraic picture.
The finished product is a new representation of M(M) and the process of synchronization, giving
us one way to visualize the reduction of possibility that occurs as observations are made.

11

4.1 Word hierarchies

Noticing the pattern in our definitions of forbidden, synchronizing, and inert words, we procede to
group words according to the size of the image of their transformations. The importance of this
size is that it is the number of possible states one could be in after seeing the word.

Definition 14. Let M be a topological �-machine with n states. The forward word hierarchy
→
∆

and the reverse word hierarchy
←
∆ are defined by

→
∆ ≡ {L→

k | k = 0, · · · , n}

←
∆ ≡ {L←

k | k = 0, · · · , n}

where the levels L
→
k and L

←
k are given by

L
→
k ≡ {w ∈ A∗ : |STw| ≤ k}

L
←
k ≡ {w ∈ A∗ : |STw| ≥ k}

Explicitly, each level L→
k consists of words whose transformations map to at most k states, and

each level L←
k contains the words whose transformations map to at least k states. The hierarchies

are just the collections of these levels. We note that A∗ =
�n

k=0 L
→
k =

�n
k=0 L

←
k so every word is

in a level of the forward hierarchy and a level of the reverse hierarchy. Observe that the levels are
nested:

· · · ⊆ L
→
k−1 ⊆ L

→
k ⊆ L

→
k+1 ⊆ · · ·

· · · ⊇ L
←
k−1 ⊇ L

←
k ⊇ L

←
k+1 ⊇ · · ·

The sets we have previously considered appear as levels (or sublevels):

L
→
0 = Forbid(M)

L
→
1 = Forbid(M) ∪ Sync(M)

L
←
n = Inert(M) ⊃ Idle(M)

We represent these hierarchies visually in Figure 6. Earlier, we observed that the synchronizing
words and the inert words are algebraically dual, having the structure of an ideal and a filter,
respectively. It turns out that the levels L→

k and L
←
k share the same relationship.

Proposition 5. Let M be a topological �-machine. Each forward level L→
k is an ideal of A∗, and

π(L→
k) is an ideal of M(M). Each reverse level L←

k is a filter of A∗.

Proof. First we show that L→
k is an ideal of A∗. Let w ∈ L

→
k and u ∈ A∗. By definition |STw| ≤ k.

Examining cardinalities we see that

|STuw| = |(STu)Tw| ≤ |STw| ≤ k

which shows that uw ∈ L
→
k . Similarly we observe

|STwu| = |(STw)Tu| ≤ |STw| ≤ k

12

L←
0

L←
n

L←
1

· · ·
· · ·

L←
n−1

L→
n

L→
0

L→
n−1

· · ·
· · ·

L→
1

→
∆

←
∆

Figure 6: The word hierarchies. A dashed boundary indicates that the set is an ideal while a double

dashed boundary means that it is a filter. Each of
←
∆ and

→
∆ cover A∗, and the levels in them are

nested.

where the first inequality holds since the cardinality of the domain of a function is never smaller
than the cardinality of its image. This shows that wu ∈ L

→
k , and therefore L

→
k is an ideal of A∗.

We noted previously that all monoid homomorphisms send ideals to ideals. Since π is a monoid
homomorphism we can immediately conclude that π(L→

k) is an ideal of M(M).
Now consider a word xy ∈ L

←
k . By definition |STxy| ≥ k so

|STx| ≥ |(STx)Ty| = |STxy| ≥ k

so x ∈ L
←
k . Identically, we see that y ∈ L

←
k . Finally let xyz ∈ L

←
k . We can factor this word as

(xy)z and by applying the previous result twice we find that y ∈ L
←
k . Since y is a generic subword

we have shown that L←
k is closed under subwords, and is therefore a filter.

The above allows us to understand the �-machine (via both A∗ and M(M)) as a nested col-
lection of algebraic objects. This representation naturally provides us with another perspective on
synchronization.

4.2 Synchronization

By observing a word letter by letter one can (hopefully) synchronize to the process, sequentially
reducing one’s uncertainty in the current state of the �-machine. We can understand this procedure

as a progression through the levels of the forward hierarchy
→
∆ that converges to the smallest non-

trivial level, that of the synchronizing words. This results in an intuitive picture of the successive
reduction in possibility that occurs as observations are made.

13

For each word w = x0x1x2 · · · we have the sequence of partial words we observe at each time
step:

x0 → x0x1 → x0x1x2 → · · ·

To each of these partial words w� we can assign the smallest level of
→
∆ that contains it. Explicitly,

we map w
� into

→
∆ by

L(w�) ≡
�

w�∈L→
k

L
→
k

which gives us what we want because the levels L→
k are nested. With this map we get a sequence

of levels corresponding to the sequence of observed partial words:

L(x0) → L(x0x1) → L(x0x1x2) → · · ·

Since the size of the image of Tw�x is at most the size of the image of Tw� , this sequence is mono-
tonically decreasing, i.e. L(w�) ⊇ L(w�

x). If synchronization is possible the levels will converge
to the smallest level of possible words, the level L→

1 of synchronizing words. We illustrate this
convergence in Figure 7.

5 Conclusion

We started by introducing the algebraic structure of a semigroup, and showed how one could
associate a semigroup to an automaton using algebraic automata theory. We then applied these
ideas to topological �-machines, and found that certain sets of epistemically important words (the
forbidden, synchronizing, idle, and inert words) corresponded to algebraic structures in the monoid
of the �-machine. This resulted in our image of the �-machine in Figure 4. In our final section we
filled in the previous picture by introducing hierarchies of words, characterized by the degree to
which they reduce uncertainty in the state of the �-machine. In this framework we saw that the
process of synchronization is naturally represented as a monotonic movement through nested levels
of decreasing size.

From here one could pursue a few different research directions. First, one could consider the
full probabilistic �-machine. If it is finite its transformations are given by finite stochastic matrices,
which form a monoid under multiplication. To avoid matrices with arbitrarily small entries one
should normalize after multiplication. The concepts introduced here should easily translate. Instead
of considering the size of the image |STw| we can use the conditional entropy H[S|w] as a measure
of state uncertainty given the word w. We believe the results here will hold in this new setup. The
algebraic picture of synchronization in the probabilistic case should give another perspective on
familiar entropy convergence curves.

For the most part the propositions here did not depend on the special properties of topolog-
ical �-machines and held for arbitrary semiautomata. It would be interesting to see if one can
make stronger statements using these properties, and perhaps characterize the optimality of the
probabilistic �-machine from this algebraic perspective.

Finally, the ideas introduced here might also be used in studying hierarchical �-machine recon-
struction. In the latter procedure there are three processes occuring simulataneously: synchroniza-
tion, �-machine construction in a model class, and movement from one model class to another. We
think our picture of synchronization might inspire a unified way to look at these three processes,
and perhaps unite them into one inferential procedure.

14

References

[1] M.A. Arbib, K. Krohn, and J.L. Rhodes. Algebraic theory of machines, languages, and semi-

groups. Academic Press, 1968.

[2] S. Eilenberg. Automata, languages, and machines. Academic Press, 1976.

[3] M. Holcombe. Algebraic automata theory. Cambridge University Press, 2004.

[4] J. Rhodes. Applications of Automata Theory and Algebra: Via the Mathematical Theory of

Complexity to Biology, Physics, Psychology, Philosophy, Games, Codes. Rhodes, 1971.

15

0 S
1 S

1 S
0 S

0 S
0 S

1 S
1 S

L
(x

0)
L
(x

0x
1)

L
(x

0x
1x

2)

F
ig
u
re

7:
S
yn

ch
ro
n
iz
at
io
n
as

se
en

in
th
e
m
on

oi
d
M

(M
).

A
t
ea
ch

ti
m
e
st
ep

a
le
tt
er

x
j
is

ob
se
rv
ed

an
d
th
e
n
ew

p
ar
ti
al

w
or
d
w

�

en
te
rs

a
sm

al
le
r
le
ve
l
L
(w

�)
.
H
er
e
th
e
w
h
it
e
ar
ea

re
p
re
se
nt
s
th
e
se
t
L
(w

�)
w
h
il
e
th
e
b
la
ck

ar
ea

is
n
o
t
co
nt
ai
n
ed

in
th
e
se
t.

A
t

th
e
en

d
of

th
e
p
ro
ce
d
u
re

th
e
le
ve
l
L
(x

0
x
1
x
2
x
3
)
is
eq
u
al

to
th
e
se
t
of

sy
n
ch
ro
n
iz
in
g
w
or
d
s,
an

d
th
e
ob

se
rv
er

is
sy
n
ch
ro
n
iz
ed

to
th
e

p
ro
ce
ss
.
C
om

p
ar
e
th
is

p
ic
tu
re

w
it
h
ou

r
st
at
ic

im
ag

e
of

M
(M

)
in

F
ig
u
re

4.

16

