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CLASSIC NETWORK GROWTH MODELS

Watts-Strogatz

randomly, independently rewire links 
of a grid

Preferential Attachment

new nodes form links with probability 
proportional to target’s degree

Generate “small-world” networks with properties like small diameter, 
high clustering, power-law degree distributions
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• Many network growth models have dynamic links but static 
nodes

• But in many real world systems nodes are dynamic

• e.g., neurons, Internet routers, airports, people

• Motivates network growth models with dynamic nodes

DYNAMIC LINKS,        
DYNAMIC NODES
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NETWORK OF MAPS

• Undirected graph

• Nodes: logistic maps 
(or other one-dimensional maps)

• 300 nodes, 5000 edges (randomly chosen)

• Evolution:

f(x) = rx(1− x)

coupling parameter

Each node evolves according to its own logistic map and 
an evenly weighted sum over its neighbors

xi(t + 1) = (1− �)f(xi(t)) +
�

ki

�

j∈B(i)

f(xj(t))

degree
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GLOBAL REWIRING ALGORITHM

• Iterate for a transient so that the system’s on an attractor

• Iterate for more time steps, and after each update, rewire:

1.Choose a node at random (the “pivot”)

2.Find which other node is most coherent with the pivot, i.e., which 
minimizes                                  (the “candidate”)

3.If the candidate is already connected to the pivot, do nothing

4.Else form a link between the two, and sever the link between the pivot 
and its least coherent neighbor (i.e., the neighbor    that 
maximizes                                ).

P. Gong and C. Van Leeuwen, 2004.  D. van den Berg and C. van Leeuwen, 2004.

k

dij(t) = |xi(t)− xj(t)|

dik(t) = |xi(t)− xk(t)|
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GLOBAL REWIRING ALGORITHM

• toy model for neurogenesis

• interesting dynamics:       
below threshold population,    
dynamic in time:

above threshold, settles onto 
small-world topology

• artificial choice of who rewires 
(requires random number 
generator)

• unrealistic choice for targets of 
new links: link to the most 
coherent node, no matter 
where it is in the network

Advantages Disadvantages

co
he

re
nc

es
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MODIFICATION (1 OF 2):
WHO REWIRES?

�
j∈B(i) |xj(t)− xi(t)|

• Nodes rewire whenever their total decoherence with their 
neighbors                           exceeds a threshold τ.

• Interpretation: nodes out of sync with their neighbors get “fed 
up” and form a new link to achieve greater coherence

• τ controls the rate at which nodes rewire their links
    set τ high: nodes rarely rewire
    set τ low: nodes frequently rewire

• Benefit: the nodes truly are autonomous
           (no random number generator)
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MODIFICATION (2 OF 2):
WHO WILL BE MY NEW FRIEND?

• Before: form a new link with most coherent node,
           no matter where it is in the network

• Change: form a link with most coherent node
            at most σ hops away

• Interpretation: nodes form connections with friends' friends;
           other nodes are too far away to know about them

• Usually take σ = 2 or 3 (diameters of our networks ~3 or 4)
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PYTHON IMPLEMENTATION
OneDimMaps.py
•LogisticMap
•TentMap
•CubicMap
•CuspMap

class MapNode
•‘Logistic’
•parameter
•state
•iterate

class NetworkOfMaps.py
•import NetworkX
•nodes [0, 1, ..., N-1]
•graph G
•update(numTimes)
•globalRewire()

•localRewire(τ ,σ)

NetworkX
http://networkx.lanl.gov/

AnalyzeNetMapsGlobal.py
•net = NetworkOfMaps(...)
•net.updateRewire(10000)
•net.diameter()
•net.degreeVariance()
•net.degreeHistogram()
•net.decoherenceHistogram()
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GLOBAL REWIRING RESULTS

• 300 nodes

• logistic map with

• 5000 edges initially chosen uniformly at random

• transient 1000, then update and rewire 10,000 time steps

• coupling constant 

r = 4.0

� = 0.3, 0.4
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GLOBAL REWIRING RESULTS

� = 0.3
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GLOBAL REWIRING RESULTS

� = 0.4
(i.e., nodes depend more on neighbors)
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LOCAL REWIRING RESULTS

• 300 nodes

• logistic map with

• 5000 edges initially chosen uniformly at random

• transient 1000, then update and rewire 10,000 time steps

• coupling constant 

• threshold                                max hops  

r = 4.0

� = 0.3

σ = 2

same setup as
global rewiring

NEWτ = 0.25, 0.2
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τ = 0.25
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τ = 0.25
(i.e., nodes rewire more)

•clustering coefficient: ~0.2
•more driving energy
•topology settles down faster
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TWO MAPS ON A NETWORK

• Heterogeneous population

• Some nodes are logistic maps, others are tent maps

• Do they coalesce into homogeneous communities?

• If so, how homogenous?

• Could we distinguish the nodes from their iterates?

• Heterogeneity     fraction of edges that connect same nodes:=
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Global
� = 0.3

homogeneity    0.9≈
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Local
τ = 0.2, σ = 3
� = 0.3 homogeneity    0.6≈
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REWIRING CONCLUSIONS
• Each node is inherently chaotic

• Nodes try to “reign in their chaos” by associating with others who are similar

• New local rewiring algorithm:

• Avoids unrealistic way of choosing who rewires and to whom

• Achieves similar results: e.g., skewed degree distribution, high clustering 
~0.2, interesting temporal dynamics

• Depends heavily on threshold τ, not so much on max hops σ
• Two maps on the network coalesce into homogeneous communities (more 

so for global rewiring because nodes can search further)

• Local Rewiring => more rewirings => knock out of “ground 
state” (homogeneous connections)
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PART II
COMPUTATIONAL MECHANICS 

OF A NETWORK OF MAPS

0.792 0.026 0.075 0.045...
0.004 0.38 0.183 0.755...
0.568 0.975 0.623 0.413...
0.022 0.893 0.103 0.646...
0.684 0.344 0.321 0.774...
0.902 0.793 0.782 0.854...
0.11 0.767 0.707 0.81...

0.107 0.387 0.524 0.055...

B A A A...
A A A B...
B B B A...
A B A B...
B A A B...
B B B B...
A B B B...
A A B A...

time series of iterates symbols

Can we infer the topology?
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MUTUAL INFORMATION OF 
TWO COUPLED LOGISTIC MAPS

• Generating partition: decision point 1/2

• Analytical expression for                    ?

x1(t + 1) = (1− �)f(x1(t)) + �f(x2(t))

A B

I(σ1(t);σ2(t))

x1(t) = 0.38297512 � σ1(t) = A
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MUTUAL INFORMATION OF 
TWO COUPLED LOGISTIC MAPS

• Need to determine the area of the unit square that gets 
mapped above 1/2

* weighted by the asymptotic distribution over the unit square *
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MUTUAL INFORMATION OF 
TWO COUPLED LOGISTIC MAPS
• If the two logistic maps sampled the unit interval uniformly,

this would be feasible: 

• But the two maps asymptotically
sample the unit square
in a complicated way

• Analytical expression: hard

Area(�) =
�
4
√

1− �−
√

2− 4�
�√

�− sin−1
�√

2
√

�
�

4
�

(1− �)� Ε � 0.1

0

1

x1

0

1

x2

histogram of 20,000 iterates
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MUTUAL INFORMATION OF 
TWO COUPLED LOGISTIC MAPS

• Trivial case:

• After one time step, they synchronize: 

Ε � 0.5

0

1

x1

0

1

x2

ρ(x) =
1

π
�

(1− x)x

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

x1(1) = x2(1)

� =
1
2

x1(t + 1) =
f(x1(t)) + f(x2(t))

2
= x2(t + 1)

I(σ1(t), σ2(t)) = H(σ1(t)) = 1 (in expectation:     )�·�t
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TRANSFER ENTROPY

σ1(t− 5)σ1(t− 4)σ1(t− 3)σ1(t− 2)σ1(t− 1)

σ2(t− 5)σ2(t− 4)σ2(t− 3)σ2(t− 2)σ2(t− 1)

σ1(t)

X

Node 1

Node 2

Y

X �

Info. theoretic measure of coherence of systems evolving in time

T2→1 := I[X �;Y |X]
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TIME-DELAYED MUTUAL INFO.

• Transfer entropy is supposedly better because it distinguishes 
exchanged information from shared info. due to common history   
(Schreiber, Phys. Rev. Letters, 2000)

• I find mixed results...

σ1(t)
M1,2(τ) := I[σ1(t);σ2(t− τ)]

σ2(t− τ)
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TWO NODES

I[σ1(t);σ2(t)]I[σ1(t);σ2(t− 1)]I[σ1(t);σ2(t− 1)|σ1(t− 1)]Network   Coupling    

0.5 1.0 0.0000004 0

0 0.000000001 0.0000001 0.0000001

0.1 0.005 0.005 0.05

0.2 0.38 0.04 0.10

�

time-delayed mutual information transfer entropy

•1,000 transients
•1,000,000 iterates
•r=4.0

z z z
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THREE NODES

I[σ1(t);σ2(t)]I[σ1(t);σ2(t− 1)]I[σ1(t);σ2(t− 1)|σ1(t− 1)]Network   Coupling    

0.5 1.0 0.000001 0.00001

0.5 1.0 0.000001 0.00001

0.1 0.001 0.007 0.05

0.1 0.01 0.006 0.002

�

time-delayed mutual information transfer entropy

•1,000 transients
•100,000 iterates
•r=4.0

z z z

sync

bad good
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THREE NODES

I[σ1(t);σ2(t)]I[σ1(t);σ2(t− 1)]I[σ1(t);σ2(t− 1)|σ1(t− 1)]Network   Coupling    

0.3 0.30 0.04 0.10

0.3 0.07 0.02 0.11

0.6 1.0 0.0000006 0

0.6 1.0 0.0000006 0

�

time-delayed mutual information transfer entropy

•1,000 transients
•1,000,000 iterates
•r=4.0

z z z

sync

sync bad

badgood
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I[σ1(t);σ2(t)]I[σ1(t);σ2(t− 1)]I[σ1(t);σ2(t− 1)|σ1(t− 1)]Network   Coupling    

0.5 0.46 0.082 0.438

0.5 0.44 0.083 0.430

0.2 0.19 0.25 0.07

0.2 0.41 0.42 0.007

�

time-delayed mutual information transfer entropy

•1,000 transients
•100,000 iterates
•r=4.0
•5000 edges

z z z

300 NODES

close closeclose

bad good
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COMMENTS

• Mutual information (no time delay) and transfer entropy can 
detect who’s connected to whom, but not always

• Transfer entropy         mutual information

• Future: try conditioning on more past symbols

• Infer paths in the network? Utilize paths in the network?

�>, �<

I(σ1(t);σ2(t− 1), ...,σ2(t− k)|σ1(t− 1), ...,σ1(t− k)
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CAUSAL STATE FILTERING

0.792 0.026 0.075 0.045...
0.004 0.38 0.183 0.755...
0.568 0.975 0.623 0.413...
0.022 0.893 0.103 0.646...
0.684 0.344 0.321 0.774...
0.902 0.793 0.782 0.854...
0.11 0.767 0.707 0.81...

0.107 0.387 0.524 0.055...

B A A A...
A A A B...
B B B A...
A B A B...
B A A B...
B B B B...
A B B B...
A A B A...

iterates symbols

Easier to infer the topology?

G F C D...
H F G C...
F C D C...
C B E E...
F G D E...
F C F G...
E E F G...
F C D G...

ε-machine
states

inference
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CAUSAL STATE FILTERING

1. Infer ε-machines from nodes’ symbolic output

2. Feed symbolic time series into ε-machine, synchronize 
to a state, then output the ensuing ε-machine states

3. Compute mutual information & transfer entropy on            
ε-machine states time series

4. Infer the network topology

ABBAABAABA... � DFEGCDFDCE...
synchronizing

word
ε-machine states

4 steps:
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CAUSAL STATE FILTERING

• Inferring the ε-machine is 
hard

• When converting symbols 
to ε-machine states, I feed 
forbidden words into the 
ε-machine

errors in CMPy

• Reset to asymptotic distribution. But: comparing two time series difficult 
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INFER NETWORK TOPOLOGY

6561
71

91
72

edge labels: mutual info x10^-3
100,000 iterates of data, ε=0.2
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INFER NETWORK TOPOLOGY

6561
71

91
72

51
53

51
36

edge labels: mutual info x10^-3
100,000 iterates of data, ε=0.2

works! (sort of)

edges not in the 
network
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PART II: CONCLUSIONS
• Inferring topology from information measures is hard but has hope

• Mutual information (no time delay) seems to work better than transfer 
entropy

• Future:

• Large networks of maps, other maps (tent, cusp, ...), other topologies 
(grids, grids with rewires, ...)

• Information measures tailored toward graphs? e.g., use degree? paths?

• Use time delay and more history to determine paths?

• Network of chaotic ODEs: more tractable & coherent than logistic maps?
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