The Truth About Reconstruction

Physics 256B
Benny Brown
Department of Physics
Complexity Sciences Center

Motivation

Agent learning on a robotic experimental platform

- 1. Agent chooses an action
- 2. Receive sensor data from environment
- 3. Update model based on action & sensor data
- Ultimate goal: on-line (real-time) reconstruction
- Immediate goal: off-line (batch mode) reconstruction
 - Causal State-Splitting Reconstruction (CSSR)
 - Subtree Merging

Reconstruction Methods

State Splitting

- Begins by assuming IID process, "bottom up" approach
- New state created when morphs of "children" states are significantly different from "parent" states
- Choose parameter history length HL

Tree Merging

- Parse Tree is created from data
- Subtrees with similar morphs are considered same state
- Choose parameters tree depth D and morph length L

Processes Inferred

Fair Coin

Golden Mean

Even

RRXOR

Fair Coin - SS

Fair Coin - TM

Golden Mean - SS

Golden Mean - TM

Even - SS

Even - TM

RRXOR Recurrent States

RRXOR States: 31 Transient, 5 Recurrent

RRXOR: SS & TM

RRXOR: SS

RRXOR - TM

RRXOR – SS, HL=5

RRXOR – SS, HL=7

RRXOR – SS, HL=9

RRXOR - TM, ML=5, TD=11

RRXOR – TM Sweep L: Recurrent States

Number of Recurrent States for RRXOR Process Inferred by Sub-Tree Merging for a Given Tree Depth and Morph Length

RRXOR – TM Sweep L: C_{μ}

RRXOR – TM Sweep L: h_{μ}

TM: Balancing D & L

L determines how many (topologically) different morphs TM can detect:

D and L together determine how many subtrees are accessible:

Detectable States

Detectable States for Various Tree Depths, D

Optimal Morph Length, L

Bounded Number of Inferred States

Conclusions & Future Work

- Inference is far from perfect, even for relatively simple processes: Plug-and-Play strongly discouraged
- Model "Glitches" may "spontaneously" occur
- Parameters can have a significant impact on performance, but higher values do not guarantee a correct model
- More comprehensive comparison between SS & TM
 - Which method works best for which cases?
- Why does SS have trouble with complex transient structures?
 - Is it actually the transients that trip it up?
- Can't wait to see what it infers from real-world experiments
 - Very "sloppy" data... friction, imperfect turns, curved trajectories
 - Highly limited data sample length... may not be able to get 10⁵ symbols