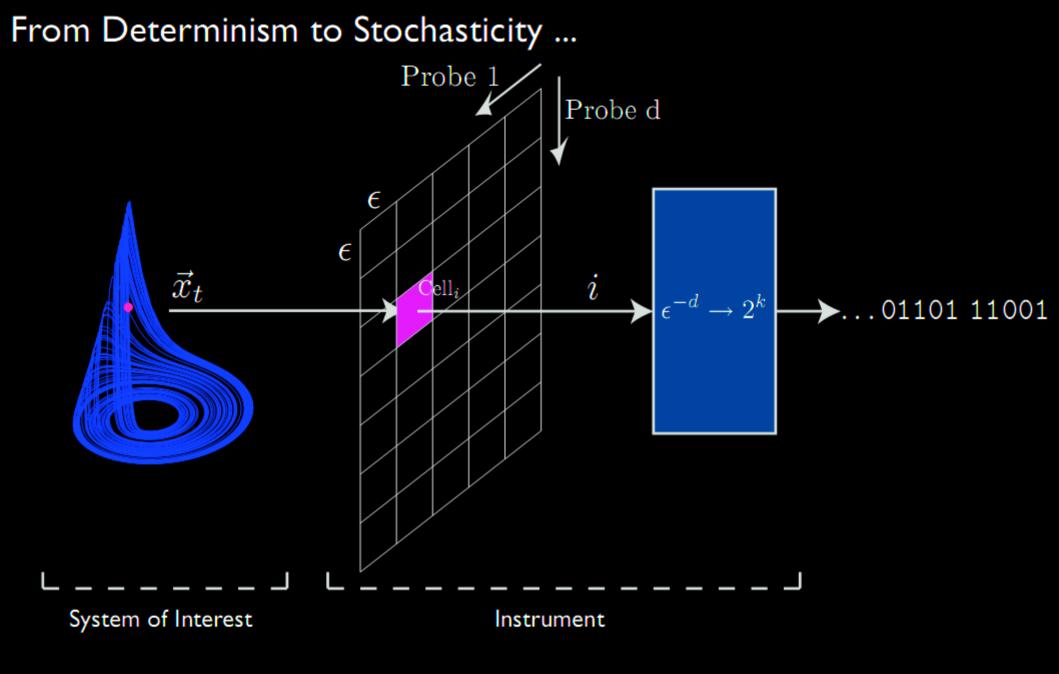
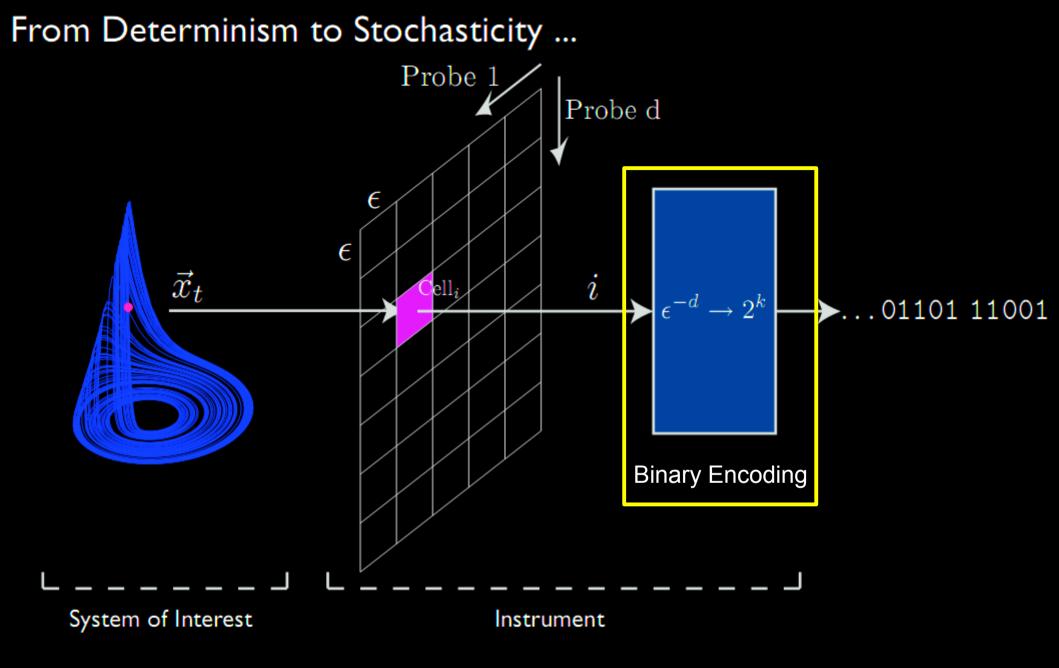
Binary Coding in ε-machine Reconstruction

Jason Barnett Final Project, Phys 256B



Measurement Channel

Lecture 13: Natural Computation & Self-Organization, Physics 256A (Winter 2010); Jim Crutchfield



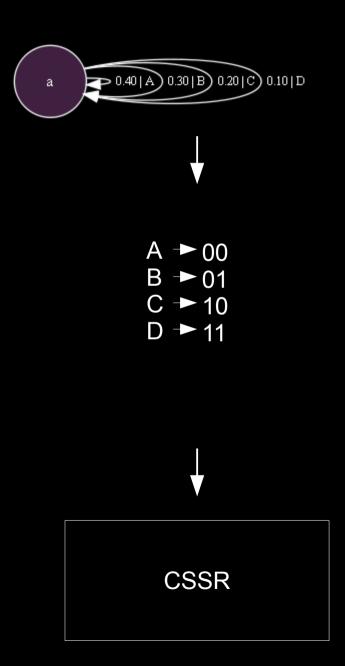
Measurement Channel

Lecture 13: Natural Computation & Self-Organization, Physics 256A (Winter 2010); Jim Crutchfield

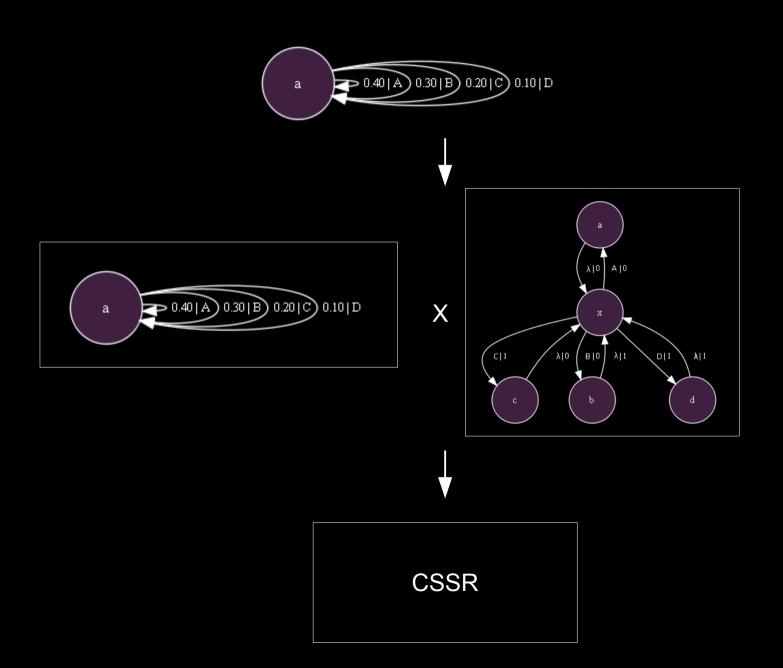
Questions

- How does binary encoding change the model?
 - · Information quantities
 - · Graph structure
- Can we map between the machines?
 - · Closed form for composed machine
 - · Invertibility of encoding, inversion synchronization
- Do all nontrivial coding methods give the same results?

Experimental Setup:



Experimental Setup:



Thoughts on h_µ

- Might expect $h_{\mu}^{bin} = h_{\mu}/2$
- Calculation process (H(2)):

A	В	В	D	A	С	D	В	С	A	A	D	В	С	D	С	▼ n symbols
00	01	01	11	00	10	11	01	10	00	00	11	01	10	11	10	▲ 2n symbols

"in phase" count

"out of phase" count

Example:

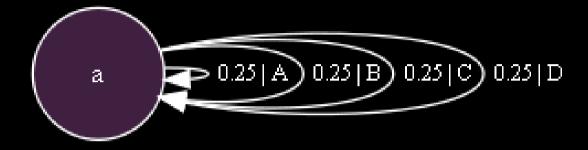
count(11) = count(D) + count(BD) + count(BC) + count(DD) + count(DC)

P(11) = count(11) / 2n

H(2) = H(P(xx))

 $h_{\mu}(2) = H(2) / 2$

Fair 4-die

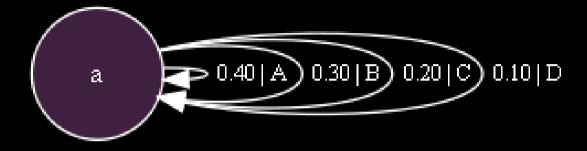


$$h_{\mu} = 2$$
 $C_{\mu} = 0$

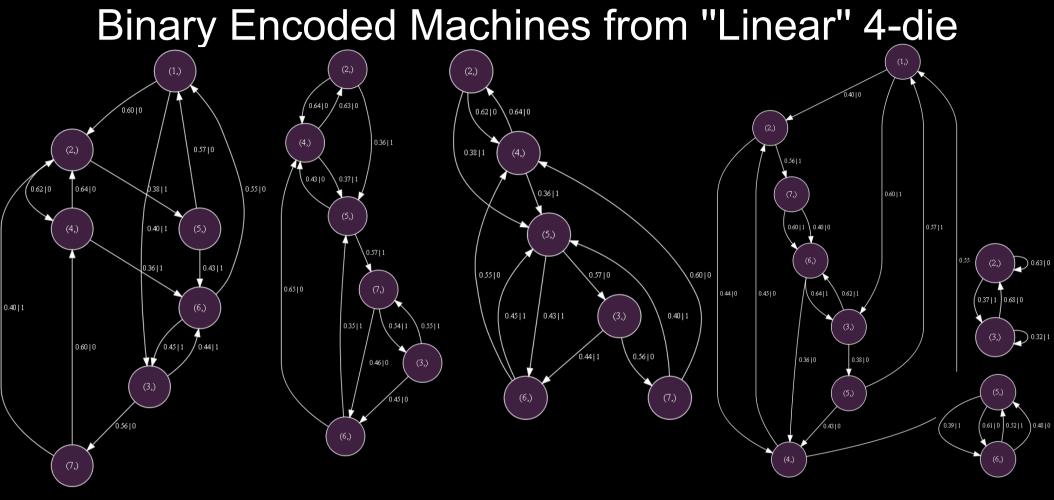
Fair 4-die



"Linear" 4-die



$$h_{\mu} = 1.846$$
 $C_{\mu} = 0$



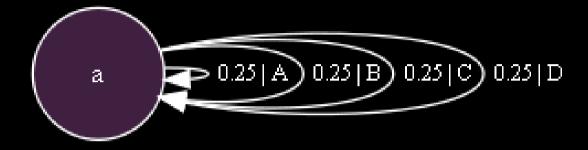
etc.

"TOO LITTLE DATA, SO I MAKE BIG" - Dr. Sbaitso

Plan B: 0.40 A 0.30 B 0.20 C 0.10 D а (CVD,) λ|0 A|0 0.33|1 0.67|0 0.30|1 • 0.40 A 0.30 B 0.20 C 0.10 D Х а (x,) Β|0 λ|1 0.70|0 0.57|0 0.43|1

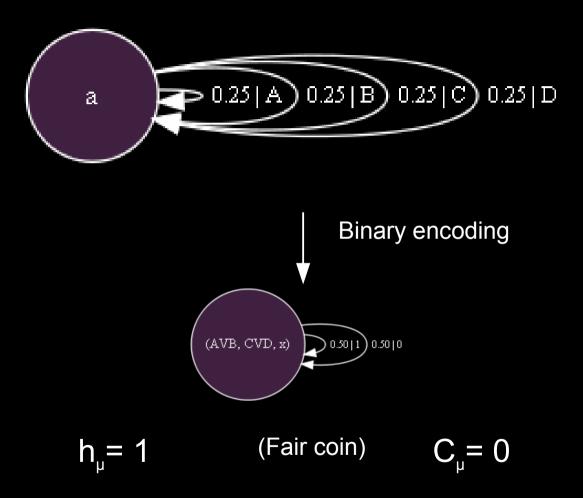
(AVB,)

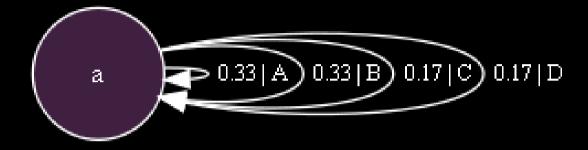
Fair 4-die



$$h_{\mu} = 2$$
 $C_{\mu} = 0$

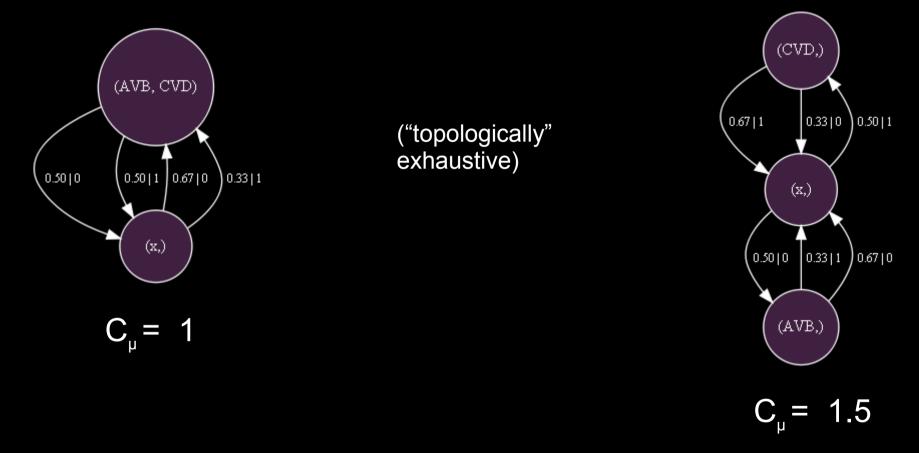
Fair 4-die





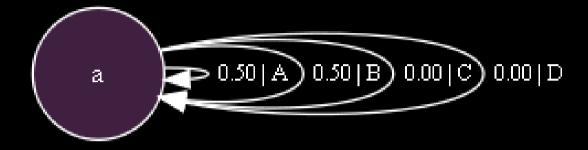
$$h_{\mu} = 1.918$$
 $C_{\mu} = 0$

Binary Encoded Machines from "Step" 4-die



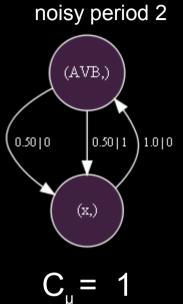
 $h_{\mu}^{bin} = .959 = h_{\mu}/2$

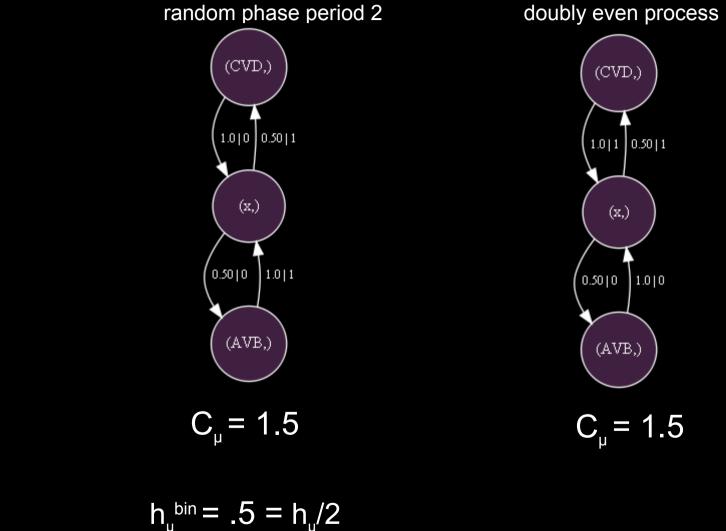
"Coin" 4-die



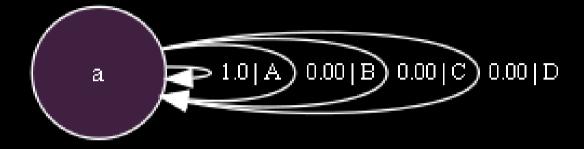
$$h_{\mu} = 1$$
 $C_{\mu} = 0$

Binary Encoded Machines from "Coin" 4-die



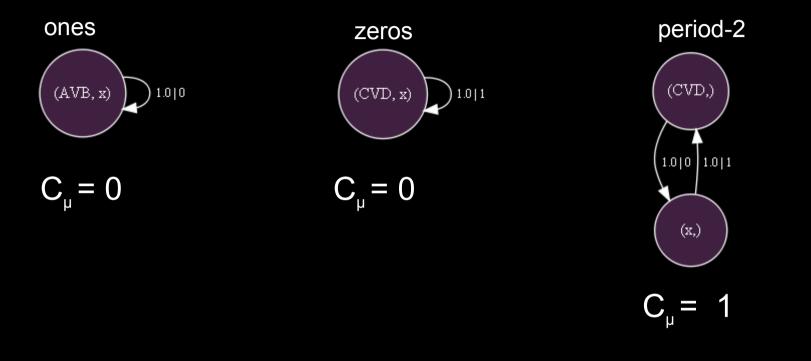


"A" 4-die



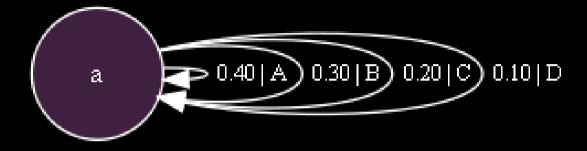
$$h_{\mu} = 0$$
 $C_{\mu} = 0$

Binary Encoded Machines from "A" 4-die



$$h_{\mu}^{bin} = 0 = h_{\mu}/2$$

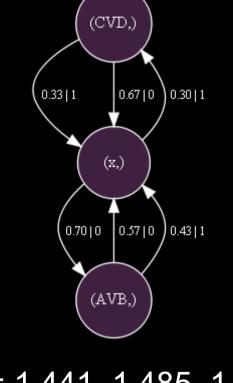
"Linear" 4-die



$$h_{\mu} = 1.846$$
 $C_{\mu} = 0$

Binary Encoded Machines from "Linear" 4-die

("topologically" general case)



 $\overline{C_{\mu}}$ = 1.441, 1.485, 1.5

 h_{μ}^{bin} = .923 = $h_{\mu}/2$

Conclusions

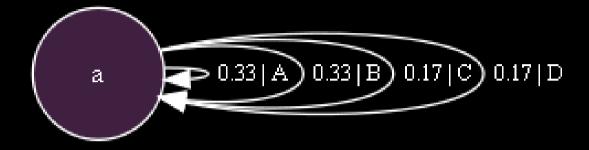
- Graph structure clearly changes
- $h_{\mu}^{bin} = h_{\mu}/2$ for 4-dice
- Composed machine can be constructed analytically
- Coding method <u>does</u> affect binary machine / C_u

Future Work

- Apply these methods to general 4-letter, 2ⁿ-letter, n-letter processes
- Functional relationship between C_µ^{bin} and C_µ
- How do E and χ change?
- "Decoding" the binary machine / inversion synchronization
- Inhomogeneous coding (Huffman?)

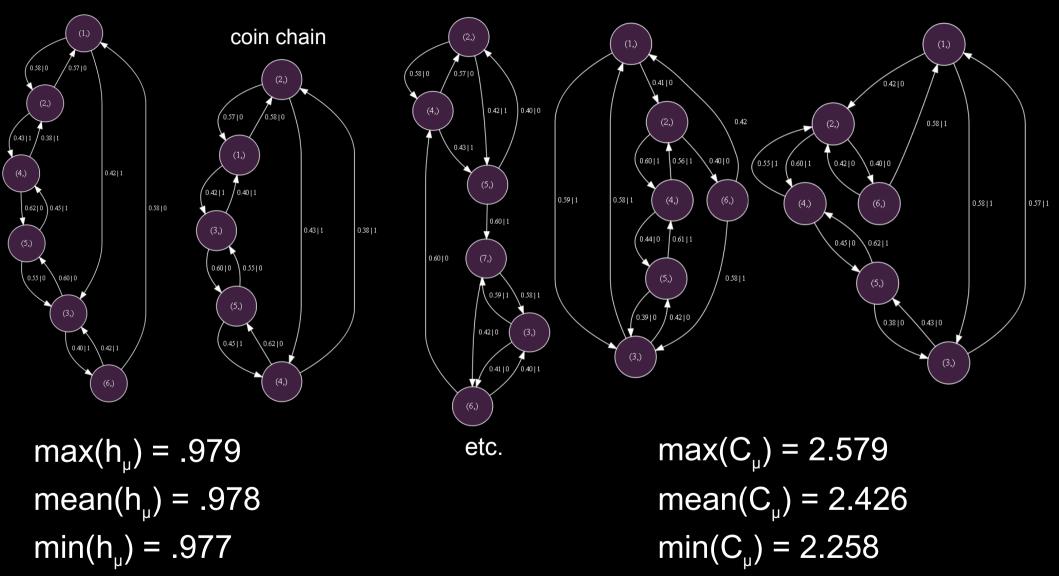
Thanks!

Plan A: Blooper Slides

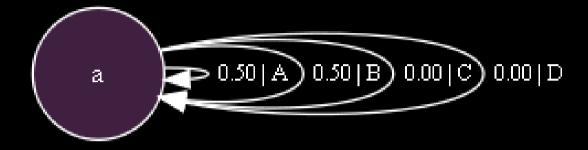


$$h_{\mu} = 1.918$$
 $C_{\mu} = 0$

Binary Encoded Machines from "Step" 4-die

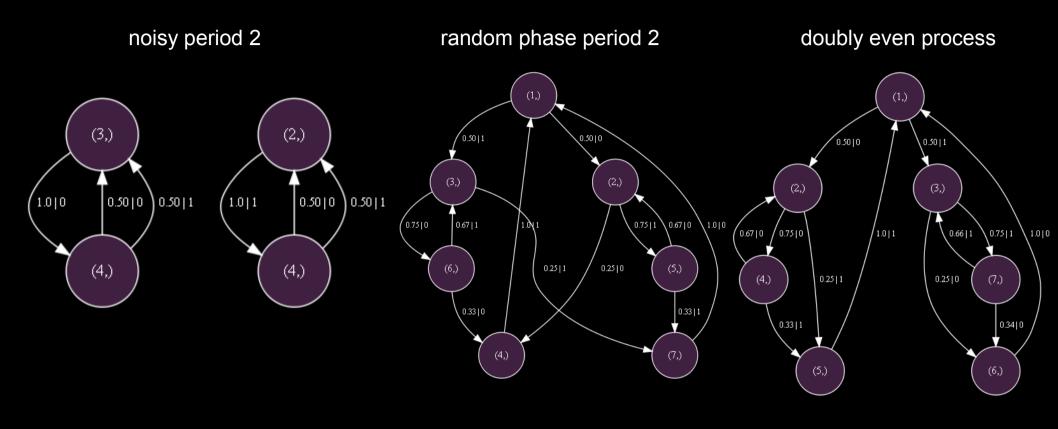


"Coin" 4-die



$$h_{\mu} = 1$$
 $C_{\mu} = 0$

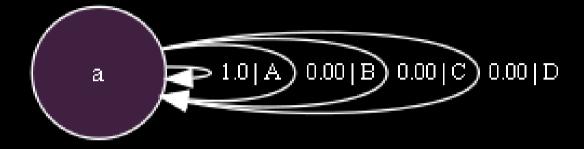
Binary Encoded Machines from "Coin" 4-die



etc.

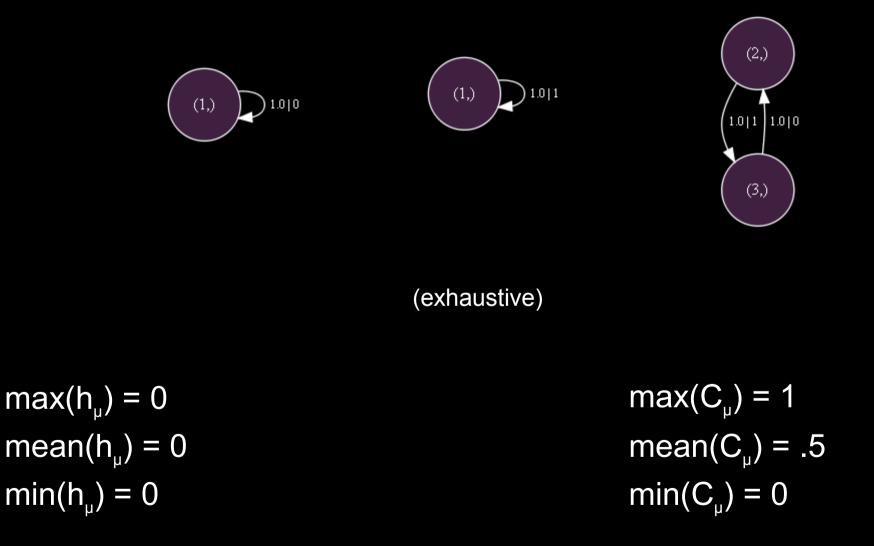
 $max(h_{\mu}) = .728$ mean(h_{\mu}) = .579 min(h_{\mu}) = .5 $max(C_{\mu}) = 2.755$ mean(C_{\mu}) = 1.585 min(C_{\mu}) = 1

"A" 4-die

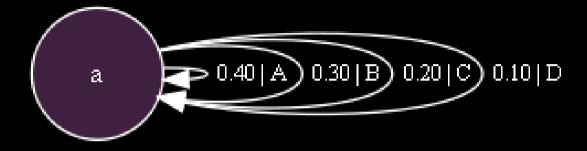


$$h_{\mu} = 0$$
 $C_{\mu} = 0$

Binary Encoded Machines from "A" 4-die



"Linear" 4-die



$$h_{\mu} = 1.846$$
 $C_{\mu} = 0$

