Musings on the Logistic Map

Shane Celis and Yun Tao PHY 256

Hypothesis

- Entropy rate measures randomness
- Lyapunov exponent measures randomness
- Is there a relationship between the two?
- Perhaps there's a functional form something like this:

$$\lambda = \lim_{p \to \infty} f(h_{\mu})$$

 And how does partition resolution affect the transient entropy rate?

Method

 Start simple. Use a ID map, the beloved logistic map.

$$x_{n+1} = r \ x_n (1 - x_n)$$

Transient Uncertainty of Length One

Transient Uncertainty of Length One

Transient Uncertainty of Length One

Transient Entropy Convergence Rate

Entropy

Entropy Rate

Entropy Rate vs. Lyapunov Exponent

FOILED!

Just for fun

Entropy vs Lyapunov Connected

