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Abstract

This paper uses the logistic map to relate some features of the
lyapunov exponent and entropy, which are dependent on partitioning
and outlines a specific property of generating partitions. It also ex-
amines the robustness of the entropy and entropy rate under partition
variation.

1 Introduction

There are a number of measures of randomness that one can apply to a sys-
tem. The lyapunov exponent is one such measure. The entropy and entropy
rate are two others. The lyapunov exponent and entropy measures operate
in different domains. The lyapunov exponent provides a measure of stability
and instability over a continuous set of values. Entropy measures, however,
are computed with a discrete set of symbols that theoretically extends in-
finitely into the future and the past. This paper will try to examine how these
different measures of randomness relate and how partitioning can affect the
entropy and entropy rate. The logistic map will be used as the system of
study.

Questions The general question this paper would like to explore is, what
does the entropy and entropy rate reveal about the dynamics of the logistic
map? More specifically, how do the lyapunov exponent and the entropy
and entropy rate relate? What kinds of randomness are they sensitive and
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insensitive to? How do the partitions affect the entropy and entropy rate?
Are they robust to partition variation?

The Figure 1 shows the lyapunov exponent and the bifurcation plot. The
lyapunov exponent nicely captures the points of instability where bifurcations
can happen. Only for values of λ ≥ 0 do bifurcations occur. Does the entropy
or entropy rate have any such indicators either in relation to the bifurcation
plot or to the lyapunov exponent? The answer will come in Section 3.
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Figure 1: Bifurcation

2 Method

The equations of motion for the logistic map are given by Equation 1.
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xn+1 = f(xn) = rxn(1− xn) (1)

xn ∈ [0, 1] (2)

r ∈ [0, 4] (3)

The value x0 is the initial condition of the system, and r is the parameter
of the system.

2.1 Lyapunov

The lyapunov exponent is calculated using the following formula. Let ntrans
denote the number transients states that are typically not used for calcula-
tions. Calculations in this paper used ntrans = 100.

λ =
n∑
i=0

ln|∂f
∂x

(xi+ntrans)| (4)

∂f

∂x
= r(1− 2x) (5)

2.2 Partitioning

One reason to focus on different partitions is to expose one of the distinctions
between the lyapunov exponent and the measures of entropy and entropy
rate. What is partitioning? Partitioning will take a sequence of real numbers
{xn} and produce a new sequence {sn} from a finite alphabet of symbols.

xn ∈ R (6)

sn ∈ A where |A| is finite (7)

sn = o(xn) (8)

Two kinds of partitioning will be examined in this paper. Generating
partitions are specially constructed so that hopefully one can study the sym-
bol sequence to learn about the continuous system. However, generating
partitions require that one know the dynamic of the system, which is not
always available. Equidistant partitioning divides the state space into equal
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lengths and assigns a symbol to each piece. If one knew nothing about the
system, equidistant partitioning would be a good first guess. One reason to
explore these two partitioning schemes is they represent extremes of knowl-
edge. Generating partitions require one know intimate details of the system.
Equidistant partitions are a good guess if one knows nothing about the sys-
tem. So it is worthwhile to see how the entropy and entropy rate change
depending on what knowledge one has of the system. One would like for the
entropy and entropy rate to still be useful even if a generating partition is
not available.

An example of a partition that splits the state space of the logistic map in
two is given by Equation 9. The finite set of symbols are {0, 1}. Incidentally,
this is the partition used for many of calculations of entropy and entropy rate
in this paper.

P = {0 ∼ x ∈ [0,
1

2
], 1 ∼ x ∈ (

1

2
, 1]} (9)

A general way to form these partitions is based off of a vector x where

xi < xi+1 for i ∈ [0, n] (10)

P (x) =

(
n−1⋃
i=1

{i ∼ x ∈ (xi, xi+1]}

)⋃
{0 ∼ x ∈ [x0, x1]} (11)

For example, one could rewrite (9) in terms of (11) as P ([0, 1
2
, 1]).

Equidistant Partitions Generally for n equidistant partitions,

xi =
i

n
(12)

for i ∈ [0, n]. Let xen denote an “equidistant” Rn+1 vector where (12)
holds, and let P (xen) denote n equidistant partitions.

Generating Partitions Generating partitions are constructed in the fol-
lowing way. Let f 2(x) denote f(f(x)).

∂fm(x)

∂x
= 0 (13)
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The function f is given by Equation 1. Solving (13) for x produces
solutions x1, x2, . . . , xn−1 where xi < xi+1 for i ∈ [1, n − 1]. So that it
fits within the formalism of Equation 11, let x0 = 0 and xn = 1. Let xgn
denote this “generating” Rn+1 vector, and let P (xgn) denote n generating
partitions. The relationship between the number of iterations m and the
number of partitions is n = 2m. For example, the generating vector for
n = 4 is xg2 = (0, 1

4
(2−

√
2), 1

2
, 1

4
(2 +

√
2), 1).

Interpolating Partitions Given the generating and equidistant parti-
tions, one can compare the entropy and entropy rate calculated using each
partition type, which this paper will do; however, rather than only comparing
these distinct partitions, it might be interesting to see how the entropy and
entropy rate change as the partitions are changed slightly. Toward that end,
one can construct a means of interpolating between these two partitioning
schemes.

xin(α)= xen + (xgn − xen)α (14)

α ∈ [0, 1] (15)

For the extreme values of α, it is equivalent to the generating or equidis-
tant partitions.

xin(0)= xen (16)

xin(1)= xgn (17)

So P (xi4(
1
2
)) would denote four partitions that is midway between the

generating partitions and the equidistant partitions.

2.3 Entropy

To calculate the length-L estimate for the entropy, the following formula is
used

H(L) = −
∑
sL∈A

Pr(sL)log2(Pr(s
L)) (18)

H(0) = 0 (19)

where sL is a string of L symbols, and A is the alphabet.
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2.4 Entropy Rate

The length-L estimate for the entropy rate is given by (20).

hµ(L) = H(L)−H(L− 1) (20)

3 Results

The majority of the results for this paper are plots. Figure 3 shows H(L)
for L ∈ [1, 9] for the generating partition P (xg2), which is equivalent to the
partition described by Equation 9 . (Note that P (xg2) = P (xe2) only for the
case where n = 2.)

3.3 3.6 3.9 r

3

6

9
HH7L

3.3 3.6 3.9 r

3

6

9
HH8L

3.3 3.6 3.9 r

3

6

9
HH9L

3.3 3.6 3.9 r

3

6

9
HH4L

3.3 3.6 3.9 r

3

6

9
HH5L

3.3 3.6 3.9 r

3

6

9
HH6L

3.3 3.6 3.9 r

3

6

9
HH1L

3.3 3.6 3.9 r

3

6

9
HH2L

3.3 3.6 3.9 r

3

6

9
HH3L

Figure 2: The entropy of the logistic map H(L) partitioned with P (xg2)
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Figure 3: The entropy rate of the logistic map hµ(L) partitioned with P (xg2)

One of the important features of the lyapunov exponent becomes appar-
ent when examining it in relation to the bifurcation plot. Does the plot of
entropy have any readily identifiable features with respect to the bifurcation
plot? See Figure 4. The superstable period 3 near r = 3.8 seems to corre-
spond with the dramatic dip in entropy. What explains this? At the super
stable period 3 orbit, the sequence (x1, x2, x3, x1, . . .) will produce sequences
(s1, s2, s3, s1, . . .), so it makes sense that less variety of sequence symbols
exists and therefore the entropy is less.
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Figure 4: Bifurcation plot above and H(5) below using partition P (xg2)

Figure 5 shows the entropy of the logistic map above the lyapunov expo-
nent. Here there are some immediately identifiable features. The superstable
points where λ goes to negative infinity seem to correspond to spikes in the
H(5) graph. Where do the spikes in H(L) come from? Examining Figure 4,
one can see for r < 3.2 that H(5) = 0 even though the sequence bifurcated
into two orbits near r = 2. What accounts for this? It is partly because of
the partitioning. So long as the two orbits are confined to the same partition,
in this case (1

2
, 1], they are invisible to the measure of entropy. H(5) peaks

near r = 3.2 when one of those orbits crosses into the other partition, crosses
over the 1

2
boundary, and the entropy measure is finally able to “see” it.

8



2.6 2.8 3.2 3.4 3.6 3.8 4
r

-100

-50

50

Λ

2.6 2.8 3.2 3.4 3.6 3.8 4
r

1

2

3

4

5
HH5L

Figure 5: H(5) of the logistic map using partition P (xg2) and the lyapunov
exponent

Still unexplained is why the lyapunov exponent shows a point of super-
stability where H(5) peaks. Is this a consequence of an intrinsic property of
entropy, a happenstance of the partitioning? Perhaps it is a worthwhile prop-
erty of good partitioning. Consider that the construction of the generating
partitions solves ∂f

∂x
= 0 and the lyapunov exponent goes to negative infinity

when that is the case. By using generating partitions, the places where or-
bits cross into other partitions coincides with points of superstability. There
is probably a lot to recommend placing the division between partitions on
places of superstability.

To rule out the coinciding of H(5) peaks and the superstable points as
an intrinsic property of entropy, consider what the entropy would look like
with a different partition. Figure 6 shows H(5) with the generating partition
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of two above and an equidistant partition of three below. Notice that all
the features that correspond with the superstability points in the lyapunov
exponent have vanished, with the exception of the superstable period three.
However, it does appear that the entropy “sees” the bifurcations “sooner”
for r < 3 on account of the three equidistant partitions.
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Figure 6: Above H(5) with partition P (xg2) and below H(5) with partition
P (xe3)

3.1 Partition Studies

One question to contend with is, how important is the partitioning one
chooses? This paper will compare generating partitions for the logistic map
with equidistant partitions by using interpolating partitions. Equidistant
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partitioning seems like a reasonable assumption to make, especially if one
is building an apparatus to measure a physical system. As one changes the
partitioning slightly, does it create drastic differences with respect to the en-
tropy and entropy rate? Or is the entropy and entropy robust under partition
variation?

To answer those questions, consider the following contour plots. The dark
areas indicate low values. The light areas indicate high values. One can think
of the previous plots of H(L) vs. r as mere slices that we are now looking
down upon. The number of partitions are noted as n and block length is
noted as L. At the bottom of each graph, where α = 0 that is the entropy
for the equidistant partition, and as α increases from 0, it approximates the
generating partition until α equals 1. At α = 1, that is the entropy for
generating partition. The case where n = 2 is not terribly interesting since
the generating partition and equidistant partition are equivalent for that
case, but it is shown in Figure 7 for completeness.
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Figure 7: This contour plot shows H(L) for interpolation parameter α vs.
the logistic map parameter r. Dark areas indicate low values. Light areas
indicate high values.

If the entropy and entropy rate are robust, the contour plots should have
contiguous regions. If they are not robust, the contour plots should look very
noisy. Figure 8 and Figure 9 are both contiguous plots, so the entropy and
entropy rate do appear to be robust under partition variation.
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Figure 8: This contour plot shows H(L) for interpolation parameter α vs.
the logistic map parameter r. Dark areas indicate low values. Light areas
indicate high values.
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Figure 9: This contour plot shows hµ(L) for interpolation parameter α vs.
the logistic map parameter r. Dark areas indicate low values. Light areas
indicate high values.
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4 Conclusion

This paper has shown and explained some features of how the entropy and
the lyapunov exponent relate, noting that the spikes in entropy relate to the
points of superstability due to the choice of a generating partition. It has
also shown how entropy and entropy rate behave under partition variation,
and shown that they appear to be robust.

5 Future Work

The generating and equidistant partitions compared in this paper all had
the same number of partitions. It may be of interest to define a means
of morphing between partitions of different sizes and examining how the
entropy and entropy rate behave. For direct comparisons, all the equidistant
partitions had an even number of partitions, so in effect they had one part
of the generating partition right: xi = 1

2
for some i. This merely serves to

emphasize that there is much more variety in partitioning than this paper
has addressed.
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