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Abstract

Starting from the fact that turbulence is a chaotic and random process the hypothesis is

suggested that an information theoretic measure for turbulence can exist and that the entropy

rate hµ is an appropriate measure. In order to provide first evidence a 9D Lorenz system is

investigated with means of a designed Matlab software toolbox. The necessary background

leading to the hypothesis and for the presented analysis is provided. The achieved results

corroborate the hypothesis. Future investigation methods are proposed.
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1 Introduction

Turbulence is one of the biggest unsolved physical sciences and engineering problems of

our time. Although studied for decades the mechanisms are still barely understood and we

are far away from a closed theory. Hence, today’s engineers and scientist have to model

the phenomenon rather than simulate it. Although today’s models provide in some cases

fair results, to get there they need a lot of adjustment, which relies on a huge amount of

experience and experimental testing. But predicting a system with an (in theory) infinite

number of degrees of freedom is very close to impossible and demands a huge amount of

computational effort and the restriction to a rather small simulated area, as the Direct-

Numerical-Simulation (DNS) approach shows.

The leap from modeling to simulating, in other words, from qualified guessing to predict-

ing, would revolutionize many areas of science, e. g. aeronautical, automotive and space

engineering, atmospheric sciences, astrophysics, to name just a few. It could also affect

our daily lives, e. g. from tomorrow’s means of transportation up to answering the simple

question: Shall I bring an umbrella along?

The following report shall introduce some new ideas of how turbulence could be ap-

proached. It will focus on the idea of prediction from an information theoretic point of

view. Therefore, a method that explains how to get from the governing equations of a well

studied flow phenomenon, the Rayleigh-Bénard Convection, to a possible measure of its de-

gree of turbulent behavior, the (information) entropy rate of an attractor, will be presented.

Also, a set of Matlab tools was developed that realizes this method and some first results

will be shown. Finally, subsequent work will be outlined.

1



2 From Flow to Entropy Rate

2.1 Rayleigh-Bénard Convection: Governing Equations

The investigations throughout this paper will be restricted to the Rayleigh-Bénard Con-

vection (RBC), which describes the flow of a fluid confined by a hot lower boundary and

a cold upper boundary (Fig. 2.1). There are two very straight forward reasons for this

Figure 2.1: Scheme of Rayleigh-Bénard Convection

constraint: Firstly, while the RBC is a rather simple model flow, it still describes a flow

phenomenon that is very common in nature. Secondly, it is (for obvious reasons) the most

excessively, one could say, almost solely studied flow when it comes to the methods we are

going to present. But by no means should this “restriction” be regarded as a limitation as the

methods presented, given the correct modifications, can be applied to any flow phenomenon.

Without going into the details of their derivation [8] the governing equations of this flow in
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non-dimensional form are the momentum balance:

1

Pr

{
− ∂

∂t
∆ψ +

∂

∂z

(
u
∂u

∂x
+ w

∂u

∂z

)
− ∂

∂x

(
u
∂w

∂x
+ w

∂w

∂z

)}
= −∆2ψ − ∂θ

∂x
(2.1)

and the energy balance:
∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
= ∆θ +Ra · w (2.2)

They describe the evolution in space and time of two-dimensional deviations (disturbances)

from the equilibrium state of the velocity Ψ and temperature Θ field of the flow. The use of

stream function Ψ to describe the velocity field guaranties mass balance automatically as it

is defined by

u = −∂Ψ

∂z
and w =

∂Ψ

∂x
(2.3)

There are two important non-dimensional parameters in the two equations: The first one is

the Prandtl number:

σ =
ν

κ
(2.4)

The Prandtl number, usually reffered to as Pr, is a property constant of the fluid medium

and describes the ratio of viscous over thermal effects. The most common value for the

Prandtl number in our context is σ = 10, which is equivalent to water at a temperature of

about 5 ◦C. The second parameter is the Rayleigh number:

Ra =
αgH3∆T

κν
(2.5)

This will be the varied parameter of our system. It represents the ratio of buoyancy over

thermal effects. As most of the quantities in (2.5) are constant (acceleration of gravity g,

coefficient of volume expansion α, coefficient of thermal diffusivity κ) Ra ∝ ∆T and thus, can

be regarded as the heating rate of our confined system. The Rayleigh number significantly

influences the behavior of the flow: the higher the temperature gradient between the upper

and lower boundary the more sensitive the fluid reacts to external disturbances. Up to a

critical Rayleigh number Rac all disturbances are damped out by the flow and it remains

stable. This critical Rayleigh number can be expressed in terms of the aspect ratio a = H
L
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of our system as

Rac =
π4(1 + a2)

3

a2
(2.6)

Once we raise the temperature gradient above this value the flow becomes unstable, the

disturbances begin to grow and the well known convection rolls appear. If we keep on

increasing the heating rate the flow becomes more and more tumultuous until – passing

through the transient phase – it finally enters the turbulent regime and the flow becomes

fully chaotic.

2.2 Reducing the Degrees of Freedom

2.2.1 The Galerkin Method

As mentioned before a major problem, when investigating flow phenomena, is the theoret-

ically infinite number of degrees of freedom. In the 1960s the pioneering work of two men,

namely Barry Saltzman and Edward N. Lorenz, tried to cope with this problem and intro-

duced a procedure that dramatically reduced the degrees of freedom to a countable amount.

It can be seen from experiments that the flow and temperature field of the occurring flow

in RBC have periodic behavior. Thus, Saltzman expanded the stream function and the

temperature field into a double Fourier expansion:

ψ (x, z, t) =
∞∑

m=−∞

∞∑
n=−∞

ψ (m,n) (t) exp
(

2πhi
(m
L
x+

n

2H
z
))

(2.7)

θ (x, z, t) =
∞∑

m=−∞

∞∑
n=−∞

θ (m,n) (t) exp
(

2πhi
(m
L
x+

n

2H
z
))

(2.8)

These are split in their real and imaginary parts: ψ (m,n) = ψ1 (m,n) − iψ2 (m,n) and

θ (m,n) = θ1 (m,n) − iθ2 (m,n). The second step is then to choose a finite number of

modes that approximate these expansions, but still contain the main features of the flow.

We will talk about this in greater detail in the next chapter. Now these approximations are

plugged into (2.1) and (2.2) and a Galerkin method is applied, which exploits the Kronecker

delta property of the basis function space of the Fourier series. By multiplying each of the

governing equations with each of the chosen modes and then integrating over the domain of
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the flow the fourth order system of partial differential equations is turned into a system of

first order ordinary differential equations for the Fourier coefficients ψ1, ψ2, θ1 and θ2. These

are now the degrees of freedom of our system:

Ẋi = f
(
~Xi

)
(2.9)

This system can easily be solved numerically, e. g. with a Runge-Kutta method. In a last

step the resulting system is transformed to a final form by introducing a dimensionless time

t = π2 (1 + a2) τ and the normalized heating rate r which is defined as r = Ra
Rac

.

2.2.2 Selecting the right Modes

Picking a finite number of modes out of the infinite number of possibilities offered by the

Fourier expansion is the true art behind the procedure of effectively reducing the degrees of

freedom of the flow. What sounds like a bit of magic at first is founded on a rather small

research field of its own, with some of the most elaborate results being very recent [5] [6] [7].

As a rule Saltzman, as well as Lorenz, excluded all ψ2 and θ1 modes. Moreover, both did

not consider shear flows and thus, ψ1 modes with m = 0 were also excluded.

Since Edward N. Lorenz picked “his” distinct three modes (X (t) = ψ1 (1, 1), Y (t) =

θ2 (1, 1), Z (t) = θ2 (0, 2)) which lead to the celebrated Lorenz system, a lot of authors tried

to expand the minimal set of modes to study its effect on the emerging dynamical system.

Many of these attempts were carried out without any justification of the choice of modes.

But this trial and error method leads only in very few (lucky) cases to a dynamical system

worth investigating, hereby not even speaking of the correctness of the underlying physics

(Fig. 2.2). Both pioneers already mentioned the importance of energy conservation without

going into greater detail.

It was left to Treve and Manley [11] in 1981 to carry out the first systematic analysis of the

mentioned energy conservation criterion. Their work resulted in a set of rules for choosing

only modes that do not violate energy conservation. Moreover, they classified different

mode expansions by their order, namely the number of chosen modes (thus the classical

Lorenz system would be of order k = 3). Eventually they analyzed the capability of the

expansions to approximate some properties of the underlying flow, like the asymptotic and

time-dependent behavior in estimating the Nusselt number for different initial values. The
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Figure 2.2: Phase portrait of an unphysical dynamical system

main result of Treve’s and Manley’s research was that for different regimes of the heating

rate r a different number of modes is needed in order to get reliable results. The authors

point out that the very famous Lorenz phase portrait for r = 28 does not correctly reflect

the underlying physics. For r of this magnitude their method implies the need of far more

than 100 modes.

Throughout the 80s and 90s more and more Low Order Models were derived, some of which

following the set of rules, introduced by Treve and Manley, some of which ignoring them. But

none of them further investigated the underlying physics of the selection procedure. In the

beginning 2000s a group around Alexander Gluhovsky [4] made new efforts to bring more

structure into the arbitrary selection chaos. The group’s research identified the Volterra
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gyrostat as an essential building block for deriving new Lorenz like low order models (LOM)

which ensures energy conservation, as well as, other conservation laws, e. g. vorticity

conservation in the case of flows with shear. This revolutionary result implies that the

selection process of physically correct modes does not only follow a distinct set of rules but

as a result emerges in a structure that can be reinterpreted as a mechanical model.

Very recently, a series of three consecutive papers was published by Roy and Musielak [5]

[6] [7]. This is the so far most detailed research on mode selection. The dynamical system

studied in this paper is taken from the first paper of this series. First of all the authors refine

and expand the rules for selecting appropriate modes: In order to be a physically correct

LOM the set of selected modes must

� (Rule 1) conserve energy in the dissipationless limit

� (Rule 2) have bounded solutions.

Starting from these criteria the papers investigate three different methods of adding Fourier

modes to the expansion: vertical mode truncation, which corresponds to keeping m fixed and

increasing n, horizontal mode truncation, which is the other way round and the combination

of both. For all methods the system with the minimal number of dimensions (modes) that

complies with the above rules is derived. It is worth mentioning that the original Lorenz

system is always a subset of these systems. Furthermore, some basic properties of the

dynamical systems are explored and the effects of the different methods on the behavior of

the system on its route to chaos over varying r are compared. The paper also discusses the

structure and role of mode coupling and the significance of the Z modes. These are those

temperature modes with m = 0.

In the following those results with significance to the paper at hand shall be summarized:

The minimal system with vertical mode truncation has nine dimensions, the one with

horizontal five and in the case of mixed modes eight dimensions are needed. The first and

the second system have the same routes to chaos, namely via chaotic transients, this is the

same route as the original Lorenz system. The 8D system having a route to chaos via quasi-

periodicity is caused by the higher number of coupled modes. Finally, a dependence of the

onset of chaos, i. e. for which value of r = rt the system enters chaos, on the number of Z

modes is observed: the more Z modes the dynamical system has the higher the value of the

critical r. The range of rt is from 24.75 for the 3D Lorenz system to 41.54 for the 9D system.
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2.3 Quantifying Dynamical Systems

We have reached the point where we converted the governing equations of the convective

flow, with an infinite number of degrees of freedom (dof), into a dynamical system of odes

with a (low) finite number of dofs, conserving the most important properties of the initial

system. The same way a flow can be quantified by its properties like velocity, temperature

and pressure, a dynamical system can be described by the properties of its stable and unstable

manifolds. A key quantity is its Lyapunov Characteristic Exponent Spectrum (LCES) [10].

By just looking at the algebraic signs of LCES one can immediately classify the attractors

of the system. Also, the values of the LCES can be used to determine further properties,

like the dissipation rate of the system

D =
∑
i

λi (2.10)

the (conjectured) Kaplan-Yorke dimension of its attractor

d = j +

∑j
i=1 λi
|λj+1|

(2.11)

and the inherent randomness of the attractor quantified by the entropy rate of the attractor

hµ =
∑
λi>0

λi (2.12)

Formally speaking, in the thermodynamic sense, the entropy describes the number of mi-

crostates a thermodynamic system can be in. More loosely, one can refer to the entropy as

the degree of disorder a system is in. In a similar way the information theoretic entropy

rate, in this case calculated by the positive Lyapunov exponents of the dynamical system,

describes the irreducible rate of randomness produced by its source [9], i. e. loosely speak-

ing it measures the rate of uncertainty produced by the attractor. Thus, the attractor is

stable and its entropy is zero, as the behavior is fully predictable: eventually all trajectories

are drawn towards the attractor. In this case all of its Lyapunov exponents are either zero

or negative. But as soon as the attractor becomes strange or chaotic and the outcome is

no longer predictable, even sensitively depending on the initial conditions, the entropy rate

8



becomes a positive number, as at least one of its Lyapunov exponents is positive.

The analogies to the behavior of fluid flows are evident: Once can identify the three

different flow regimes: the stable laminar flow, the unstable transient phase and the fully

chaotic and (according to the current state of knowledge) random turbulent regime. With

this in mind the (information) entropy rate of an attractor could very well serve as a measure

and predictor for turbulence! And in addition to just characterizing a flow as laminar or

turbulent it would even be possible to quantify the degree of turbulence of a flow.
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3 Dynamical Systems Toolbox

So far we have gathered the necessary background to identify a possible candidate for mea-

suring turbulence. The following chapters will try to find more evidence for this correlation

and outline some ideas that could support this assumption. As part of this project a Matlab

toolbox was developed that supports all of the above mentioned steps, hereafter referred to

as “Dynamical Systems Toolbox” (DST): The source code of each of the tools can be found

in the appendix.

The first tool “modeval”, which still is in an early beta stadium, has the purpose to assist

the derivation of the odes of the dynamical system. After entering the desired dimension and

modes of the system, it was supposed to automatically derive the equations of the dynamic

system and put them into a for Matlab readable form. Unfortunately, the programming

reached the maximum capabilities of Matlab and thus what remains is a program that only

derives the equations in their untransformed form. The current state is intended for a system

in 6D but extending the program to an arbitrary number of dimensions is possible. The tool

was verified by deriving the original Lorenz 3D system.

Thus, after using“modeval”some manual work is necessary to first transform the equations

and then convert them into a function handle file for Matlab. The second tool“tangentspace”

then calculates the tangent space of the dynamical system. This is needed for the calculation

of the Lyapunov exponents.

The third tool “Lorenz9analysis” is the core piece of the toolbox. It covers the whole anal-

ysis and calculation part. It is intended to for use with an arbitrary number of dimensions,

but some minor modifications are still necessary in order to adjust it to the desired number

of dimensions. The current state is intended for a 9D system.

In a first step the tool “Loren9sim” simulates the dynamical system using the implemented

Runge-Kutta method (ode45) and displays the phase portraits and time series of the dynam-

ical system. It also calculates Poincaré Return Maps of the Z modes of the system.
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The second step “Lorenz9lyap” calculates the Lyapunov exponents of the dynamical sys-

tem using the Gram-Schmidt-Renormalization algorithm (GSRA) [1]. To verify the correct

implementation the tool was tested for two cases: firstly, with a linear dynamical system,

where the Lyapunov exponents can be calculated as the eigenvalues of

1

2

(
Jacobian+ JacobianT

)
(3.1)

The Lyapunov exponents could be recovered with an accuracy of less than 0.2%. The second

test was the successful detection of the zero Lyapunov exponent in a two dimensional dynamic

system with a limit cycle.

Fig. 3.1 shows that the three leading Lyapunov exponents calculated in [5] can be recovered

by the toolbox. In this case the Lyapunov exponent was calculated with the natural logarithm

instead of the logarithm to the base two.

Figure 3.1: Test calculation for verifying the implemented algorithm

The third step, called “Lorenz9lyan”, finally calculates the dissipation rate of the system,

11



the dimension of the attractor and its entropy rate.

In a final (optional) step “fieldsym” the resulting velocity and temperature field are simu-

lated.

12



4 Results and Conclusions

4.1 9D Lorenz System

To bring forward some evidence towards the project’s leading assumption the 9D system,

derived in [5] by the vertical truncation method, was selected to be explored by the DST. Two

main reasons lead to the selection of this system: as mentioned in [5] the vertical truncation

method should be the preferred one, as the fluid motion is dominant in the vertical direction.

Secondly, this system has the largest number of Z modes. The results of all three papers

indicate that especially the Z modes influence the onset of chaos in the dynamical system

and thus, might store some valuable amount of information about the turbulent behavior of

the flow. Further analysis of these particular modes is therefore interesting. These are the

equations of the studied system:

dX

dt
= −σX + σY (4.1)

dY

dt
= −XZ + rX − Y + ZX2 − 2X2Z1 (4.2)

dZ

dt
= XY − bZX2Y −XY2 (4.3)

dX1

dt
= −c1σX1 +

σ

c1
Y1 (4.4)

dY1

dt
= −2X1Z1 + rX1 − c1Y1 (4.5)

dZ1

dt
= 2XY2 + 2Y X2 + 2X1Y1 − 4bZ1 (4.6)

dX2

dt
= −σc2X2 +

σ

c2
Y2 (4.7)
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dY2

dt
= XZ + rX2 − c2Y2 − 2XZ1 − 3X2Z2 (4.8)

dZ2

dt
= 3X2Y2 − 9bZ2 (4.9)

First the resulting phase portraits, in the Lorenz state space X, Y, Z (Fig. 4.1 and Fig.

4.2) and the X2, Y2, Z2 space (Fig. 4.3 and Fig. 4.4), and the time series (Fig. 4.5 and Fig.

4.6) of each of the amplitudes are displayed for some characteristic values of the heating rate

r. The X1, Y1, Z1 is not presented as the result is meaningless.

Figure 4.1: Phase portrait in XY Z for r = 28
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Figure 4.2: Phase portrait in XY Z for r = 42
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Figure 4.3: Phase portrait in X2Y2Z2 for r = 28
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Figure 4.4: Phase portrait in X2Y2Z2 for r=42
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Figure 4.5: Time series of the amplitudes for r = 28

Figure 4.6: Time series of the amplitudes for r = 42
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4.2 Lyapunov Exponents and Information Theoretic

Quantities

Next the Lyapunov exponents for different values of r and the resulting quantities dissipation

rate, dimension of the attractor and entropy of the attractor are presented.

Some remarks have to be made about the quality of the plots: The plots of the Lyapunov

exponent and the resulting quantities imply a smoothness of the curves, which is not in

agreement with the true behavior. The reason for this is the rather low r resolution of the

plots. All computations were carried out on an Intel Core 2 Duo 2.54 GHz processor, with

which the necessary accuracy for generating high quality plots could not be reached within a

reasonable amount of time. Some of the more accurate plots presented in this paper already

had a computation time of over 12 hours.

In Fig. 4.7 the transition from the stable region to the transient (unstable) region can

be observed where the leading Lyapunov exponent touches the x-axis, and thus indicating a

bifurcation of the formerly stable origin.

Figure 4.7: Leading 3 Lyapunov exponents for 0.8 < r < 1.2, resolution: ∆r = 0.1
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Fig. 4.10 confirms the behavior of hµ discussed in chapter 2.3. hµ reflects the onset of

chaos at r = 41.54. Right after this onset the entropy rate, at first, rapidly increases to

1.672 bits
second

and then grows a lot slower as r is further increased. From the perspective of

the flow this can be explained with the fact that the flow does not abruptly change from

an unstable to a turbulent behavior. While very steep region reflects the last part of the

transition phase where the flow is not yet fully turbulent, the sharp bend at r = 42 (Fig.

4.11) indicates the beginning of the fully turbulent regime.

Figure 4.8: Evolution of the LCE spectrum for 42 < r < 70, resolution: ∆r = 1

For the explanation of the second, flat part of the curve some terminology from information

theory is needed that was not introduced in this paper. For an explanation the reader is

referred to [2]. Assuming it is possible to identify structures in a turbulent flow that can

be interpreted as causal states and thus, the dynamics of turbulence can be reduced to

the transition from one causal state of an ε-machine to another, this behavior implies that

with increasing r more of these structures develop and the flow constantly produces more

uncertainty about the state it is in.
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Figure 4.9: Evolution of the 3 leading Lyapunov exponents for 42 < r < 70, resolution: ∆r = 1

Figure 4.10: Dissipation rate, dimension and Entropy rate for 42 < r < 70, resolution: ∆r = 1
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Figure 4.11: Dissipation rate, dimension and Entropy rate for 41 < r < 45, resolution: ∆r = 0.1

4.3 Poincaré Return Maps

Lastly, without further discussion, the calculated Z mode Poincaré Return Maps (again Z

Fig. 4.12 and Z2 Fig. 4.13 only) for r = 42 are presented.
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Figure 4.12: Z Poincaré Return Map for r = 42
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Figure 4.13: Z2 Poincaré Return Map for r = 42
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5 Further Work

The next necessary step in order to find further proof for the stated assumption, that the

information theoretic entropy rate hµ is an appropriate measure for the turbulent behavior

of a flow, is to verify that the predicted value of r for the onset of chaos indeed corresponds

to a Rayleigh number where the flow becomes turbulent. This can be done by comparing

the results achieved by the presented method to numerical and experimental data, e. g. the

studies carried out by Busse et al. [3]. The data provided in [7] suggests that the marginal

value for r does not tend to infinity for an increasing number of Z modes, but converges.

Combined with the results of Treve and Manley [11] it seems necessary to derive systems

with a higher number of modes. Further investigations should find an optimal number of

modes that best describe the flow at the onset of turbulence. A reasonable trade-off has to

be made between computational effort and accuracy of the approximation. If this first step

results in a positive answer, the next step should be the analysis of the Z modes, as these

seem to contain a fair amount of information about the turbulent behavior [7]. It should be

possible to conduct an ε-machine reconstruction from the Poincaré Maps presented in this

paper. These ε-machines could then be used to retrieve causal states (in all dimensions)

from the flow. If this procedure was successful the consequences for the understanding of

turbulent flows are unpredictable.
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Appendix

Sourcecode

Lorenz9analysis.m

function Lorenz9_analysis(begin,vid,rmin,rmax,step)
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% This tool analyzes the 9D Lorenz system in the range of %
% r_min < r < r_max %
% Input variables: %
% begin - # of step to begin with %
% vid - animate flow and temperature field? (0 - No,1 - Yes)%
% rmin - minimum r %
% rmax - maximum r %
% step - stepsize between r %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% clear head %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
clc
close all

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% global declaration %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

dim = 9;

if begin == 1
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% The first step simulates the System %

A



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% declaration %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% initial condition
x0 = [1 1 1 1 1 1 1 1 1];

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% simulation call (initial_condition, r, t_end) %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

for r = rmin:2:rmax
[tv, vv] = Lorenz9_sim(x0,r,100);

end

end

if begin <= 2
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% The second step calculates the lyapunov exponents %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% declaration %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

i = 0;
nrs = (rmax-rmin)/step+1;
lyap = zeros(dim,nrs);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% lyapunov call (Dimension, # Iterations, r, Trans. Phase, t_step) %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
disp(’Running Lyapunov calculations’)
for r=rmin:step:rmax

i = i+1;
perc = i/nrs*100;
fprintf(’Currently at %3.1f %% of calculation \n’,perc)
tic
lyap(:,i) = Lorenz9_lyap(dim,1000,r,50,1);
toc

B



end

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% visualization %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

r=rmin:step:rmax;

% figure;
% plot(r,lyap);
% title(’all 9 Lyapunov Exponents’);
% xlabel(’r’);
% ylabel(’\lambda’);
% legend(’\lambda _1’,’\lambda _2’,’\lambda _3’, ...

’\lambda _4’, ’\lambda _5’, ’\lambda _6’, ...
% ’\lambda _7’, ’\lambda _8’, ’\lambda _9’);

figure;
plot(r,lyap(1:3,:));
title(’Leading 3 Lyapunov Exponents’);
xlabel(’r’);
ylabel(’\lambda’);
legend(’\lambda _1’,’\lambda _2’,’\lambda _3’);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% The third step analyzes the lyapunov exponents %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% analysis call (Lyapunov Matrix, Dimension) %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

[diss, dlyap h_mu] = Lorenz9_lyan(lyap,dim);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% visualization %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

figure;
subplot(3,1,1);
plot(r,dlyap);
title(’Lyapunov Dimension of the attractor’);

C



xlabel(’r’);
ylabel(’d_{lyap}’);

subplot(3,1,2);
plot(r,diss);
title(’Dissipation rate’);
xlabel(’r’);
ylabel(’D’);

subplot(3,1,3);
plot(r,h_mu);
title(’Entropy rate’);
xlabel(’r’);
ylabel(’h_{\mu}’);

end

if vid == 1
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% Simulation of Flow and Temperature Field (v) for rmax %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

field_sim(tv,vv,dim)
end

D



Lorenz9sim.m

function [t, v] = Lorenz9_sim(x0,r,t_end)
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% Numerical integration and visualization of the Lorenz system in 9D %
% Input variables: %
% x0 - initial condition %
% r - Rayleigh parameter %
% t_transient - Length of Integration %
% By Franz Bozsak %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% declaration %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% Model parameters
sigma = 10;
b = 8/3;
a = 4/b-1; % this is a^2
c1 = (4+a)/(1+a);
c2 = (9+a)/(1+a);

i = 1;

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% Integration using a Runge-Kutta Method %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

[t, v] = ode45(’lorenz9ode’, t_end, [x0 x0], [], sigma, r, b,c1,c2);

% Split out the trajectory matrix into x,y,z,x1,y1,z1,x2,y2,z2 vector variables
x = v(:, 1);
y = v(:, 2);
z = v(:, 3);
x1 = v(:, 4);
y1 = v(:, 5);
z1 = v(:, 6);
x2 = v(:, 7);
y2 = v(:, 8);
z2 = v(:, 9);

E



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% Visualization %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% Plot trajectory in 3x3D state-space
figure;
plot3(x, y, z, ’b-’);
title(’Lorenz State Space (X,Y,Z)’);
xlabel(’x(t)’);
ylabel(’y(t)’);
zlabel(’z(t)’);
grid on;
rotate3d on;
view([37,26]);

% figure;
% plot3(x1, y1, z1, ’b-’);
% title(’Secondary State Space (X1,Y1,Z1)’);
% xlabel(’x1(t)’);
% ylabel(’y1(t)’);
% zlabel(’z1(t)’);
% grid on;
% rotate3d on;
% view([37,26]);

figure;
plot3(x2, y2, z2, ’b-’);
title(’Secondary State Space (X2,Y2,Z2)’);
xlabel(’x2(t)’);
ylabel(’y2(t)’);
zlabel(’z2(t)’);
grid on;
rotate3d on;
view([37,26]);

% Display time series plots
figure;
subplot(3,3,1);
semilogy(t, x, ’b-’);
title(’Time series’);
xlabel(’t’);
ylabel(’x(t)’);

F



%
subplot(3,3,2);
semilogy(t, y, ’b-’);
xlabel(’t’);
ylabel(’y(t)’);
%
subplot(3,3,3);
semilogy(t, z, ’b-’);
xlabel(’x(t)’);
ylabel(’z(t)’);
%
subplot(3,3,4);
semilogy(t, x1, ’b-’);
xlabel(’t’);
ylabel(’x1(t)’);
%
subplot(3,3,5);
semilogy(t, y1, ’b-’);
xlabel(’t’);
ylabel(’y1(t)’);
%
subplot(3,3,6);
semilogy(t, z1, ’b-’);
xlabel(’t’);
ylabel(’z1(t)’);
%
subplot(3,3,7);
semilogy(t, x2, ’b-’);
xlabel(’t’);
ylabel(’x2(t)’);
%
subplot(3,3,8);
semilogy(t, y2, ’b-’);
xlabel(’t’);
ylabel(’y2(t)’);
%
subplot(3,3,9);
semilogy(t, z2, ’b-’);
xlabel(’t’);
ylabel(’z2(t)’);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

G



% Poincare Maps %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% Now find next maxima to create next-maximum map of z(t)
max_points = find((z(2:end-1) > z(3:end)) & (z(2:end-1) > z(1:end-2))) + 1;
z_max = z(max_points);
t_max = t(max_points);

% Plot Poincare map
figure;
plot(z_max(1:end-1), z_max(2:end), ’r.’);
title(’Lorenz (z) poincare map’);
xlabel(’z_{max}(n)’);
ylabel(’z_{max}(n+1)’);

% Now find next maxima to create next-maximum map of z2(t)
max2_points = find((z2(2:end-1) > z2(3:end)) & (z2(2:end-1) > z2(1:end-2))) + 1;
z2_max = z2(max_points);
t2_max = t(max_points);

% Plot Poincare map
figure;
plot(z2_max(1:end-1), z2_max(2:end), ’r.’);
title(’z2 Poincare map’);
xlabel(’z2_{max}(n)’);
ylabel(’z2_{max}(n+1)’);

H



Lorenz9lyap.m

function lyap = Lorenz9_lyap(dim,numit,r,t_transient,t_step)
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% This tool calculates the Lyapunov exponent of the Lorenz 9D %
% Input variables: %
% dim - Dimension of the system %
% numit - Number of Iterations %
% r - Rayleigh parameter %
% t_transient - Length of Transient Phase %
% t_step - Length of each Iteration %
% By Franz Bozsak %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% declaration %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% create identity matrix
evec = eye(dim);
lamda = zeros(dim);
% lyap = zeros(dim);

% Model parameters
sigma = 10;
b = 8/3;
a = 4/b-1; % this is a^2
c1 = (4+a)/(1+a);
c2 = (9+a)/(1+a);

% Initial conditions
x0 = [1 1 1 1 1 1 1 1 1];

% declare options for the integration
options = odeset(’MaxOrder’,4);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% Transient phase %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

for i=1:dim
% Integrate the system using Runge-Kutta

I



[tt, v] = ode45(’lorenz9ode’, t_transient, [x0 evec(i,:)], ...
options, sigma, r, b, c1, c2);

% new direction vectors after transient phase
evec(i,:) = v(length(v),(dim+1):(2*dim));

end

for i=1:dim
if i == 1

abv = sqrt(evec(i,:)*evec(i,:)’);
evec(i,:) = evec(i,:)/abv;

else
for k=1:i-1

d=evec(i,:)*evec(k,:)’;
evec(i,:) = evec(i,:)-d*evec(k,:);

end
abv = sqrt(evec(i,:)*evec(i,:)’);
evec(i,:)= evec(i,:)/abv;

end
end

% new x0 after transient phase
x0 = v(length(v),1:dim);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% Determine the LCE spectrum %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

for j=1:numit
for i=1:dim

% Integrate the system using Runge-Kutta
[tr, v] = ode45(’lorenz9ode’, t_step, [x0 evec(i,:)], ...

options, sigma, r, b, c1, c2);
evec(i,:) = v(length(v),(dim+1):(2*dim));

end

for i=1:dim
if i == 1

abv = sqrt(evec(i,:)*evec(i,:)’);
evec(i,:) = evec(i,:)/abv;
lamda(i) = lamda(i) + log(abv);

else
for k=1:i-1
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d=evec(i,:)*evec(k,:)’;
evec(i,:) = evec(i,:)-d*evec(k,:);

end
abv = sqrt(evec(i,:)*evec(i,:)’);
evec(i,:)= evec(i,:)/abv;
lamda(i) = lamda(i) + log(abv);

end
end
x0 = v(length(v),1:dim);

end

% average lamda

for i=1:dim
lyap(i) = lamda(i)/(numit*t_step);

end

K



Lorenz9lyan.m

function [diss, dlyap h_mu] = Lorenz9_lyan(lyap,dim)
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% This tool calculates the Lyapunov exponent of the Lorenz 9D %
% Input variables: %
% dim - Dimension of the system %
% lyap - Lyapunov matrix %
% By Franz Bozsak %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% declaration
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

kmax = length(lyap(1,:));
dlyap = zeros(kmax);
diss = zeros(kmax);
h_mu = zeros(kmax);

for k=1:kmax
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% Calculate the dissipation rate %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

diss(k) = sum(lyap(:,k));

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% Calculate the entropy rate %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

for j=1:dim
if lyap(j,k) > 0

h_mu(k) = h_mu(k) + lyap(j,k);
end

end

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% Calculate the lyapunov dimesion of the attractor %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

if lyap(1,k) < 1

L



dlyap(k) = 0;
elseif (diss(k) > 0)

dlyap(k) = dim + diss(k);
else

lysum = lyap(1,k);
i = 2;
while (lysum+lyap(i,k)) >= 0

lysum = lysum + lyap(i,k);
i = i + 1;

end
dlyap(k) = (i-1) + lysum/abs(lyap(i,k));

end
end

M



fieldsim.m

function field_sim(t,v,dim)
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% This tool simulates the resluting Flow and Temperature field %
% Input variables: %
% v - field of amplitudes %
% t - corresponding time vector %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
syms x z
q = pi/sqrt(2);
Ra = 27*pi^4/4;
m = [1 1 0 1 1 0 1 1 0];
n = [1 1 2 2 2 4 3 3 6];
for i=1:length(t)

psi = v(i,(1))*sin(m(1)*q*x)*cos(pi*(2*n(1)+1)*z)+...
v(i,(4))*sin(m(4)*q*x)*cos(pi*(2*n(4)+1)*z)+...
v(i,(7))*sin(m(7)*q*x)*cos(pi*(2*n(7)+1)*z);

theta = v(i,2)*cos(m(2)*q*x)*cos(pi*(2*n(2)+1)*z)-1 + ...
v(i,(3))*cos(m(3)*q*x)*sin(2*pi*n(3)*z)+ ...
v(i,5)*cos(m(5)*q*x)*cos(pi*(2*n(5)+1)*z)-1 + ...
v(i,(6))*cos(m(6)*q*x)*sin(2*pi*n(6)*z)+ ...
v(i,8)*cos(m(8)*q*x)*cos(pi*(2*n(8)+1)*z)-1 + ...
v(i,(9))*cos(m(9)*q*x)*sin(2*pi*n(9)*z);

figure(30), clf
subplot(2,1,1);
hold on
ezplot(psi-1, [0 pi/q -1/2 1/2]);
ezplot(psi-1.5, [0 pi/q -1/2 1/2]);
ezplot(psi-2, [0 pi/q -1/2 1/2]);
title(’Velocity field’);
xlabel(’x’);
ylabel(’z’);
hold off

subplot(2,1,2);
hold on
ezplot(theta-1, [0 pi/q -1/2 1/2]);
ezplot(theta-1.5, [0 pi/q -1/2 1/2]);
ezplot(theta-2, [0 pi/q -1/2 1/2]);
title(’Temperature field’);
xlabel(’x’);
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ylabel(’z’);
hold off

end

O



lorenz9ode.m

function Y = lorenz9ode(t,x,flag,sigma,r,b,c1,c2)
Y = [-sigma*x(1)+sigma*x(2); ...

-x(1)*x(3)+r*x(1)-x(2)+x(3)*x(7)-2*x(7)*x(6); ...
x(1)*x(2)-b*x(3)-x(7)*x(2)-x(1)*x(8); ...
-c1*sigma*x(4)+sigma/c1*x(5); -2*x(4)*x(6)+r*x(4)-c1*x(5); ...
2*x(1)*x(8)+2*x(2)*x(7)+2*x(4)*x(5)-4*b*x(6); ...
-sigma*c2*x(7)+sigma/c2*x(8); ...
x(1)*x(3)+r*x(7)-c2*x(8)-2*x(1)*x(6)-3*x(7)*x(9); ...
3*x(7)*x(8)-9*b*x(9); ...
x(11)*sigma - x(10)*sigma; ...
x(10)*(r-x(3))-2*x(15)*x(7)-x(11)-x(12)*(x(1)-x(7))+x(16)*(x(3)-2*x(6)); ...
x(11)*(x(1)-x(7))-x(17)*x(1)-x(16)*x(2)-b*x(12)+x(10)*(x(2)-x(8)); ...
(x(14)*sigma)/c1 - c1*x(13)*sigma; ...
x(13)*(r - 2*x(6)) - 2*x(15)*x(4) - c1*x(14);
2*x(17)*x(1) - 4*b*x(15) + 2*x(16)*x(2) + 2*x(14)*x(4) + 2*x(13)*x(5) + ...
2*x(11)*x(7) + 2*x(10)*x(8); ...
(x(17)*sigma)/c2 - c2*x(16)*sigma;
x(12)*x(1) - c2*x(17) - 2*x(15)*x(1) - 3*x(18)*x(7) + x(16)* ...
(r - 3*x(9)) + x(10)*(x(3) - 2*x(6)); ...
3*x(17)*x(7) - 9*b*x(18) + 3*x(16)*x(8)];
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modeval.m

function g = modeval()
% This tool derives the odes of the dynamical system
% emerging from the governing equations of the Rayleigh-Benard convection
% written for the 6D case!
% Maple engine required!
clc
clear all
close all
% Declaration of variables

syms psif psi thetaf thetaa thetab x z q t momentum energy
syms u w lap2 lap4 sigma Ra izmom ixmom ixenA izenA ixenB izenB eq
syms psi1 psi2 x Xd y Yd z Zd u Ud v Vd w Wd r
% Declaration of structure

% How many modes per amplitude are to be considered?
num_mod = 2;
% Apart from the Lorenz modes which modes are to be considered?
psi_mod = [1 0; 2 0];
thetaa_mod = [1 0; 2 0];
thetab_mod = [0 1;0 2];
% q = sym(’sqrt(1/2)*pi’);
psi = sym(zeros(1, num_mod));
thetaa = sym(zeros(1, num_mod));
thetab = sym(zeros(1, num_mod));

for k=1:num_mod
psi(k) = sym(sprintf(’psi%d(t)’, k));
thetaa(k) = sym(sprintf(’thetaA%d(t)’, k));
thetab(k) = sym(sprintf(’thetaB%d(t)’, k));

end

for k=1:3*num_mod
eq(k) = sym(sprintf(’eq%d’, k));

end

psif = 0;
thetaf = 0;

% define psi and theta

Q



for i=1:num_mod
psif = psif + psi(i)*sin(psi_mod(i,1)*q*x)* ...

cos(pi*(2*psi_mod(i,2)+1)*z);
thetaf = thetaf + thetaa(i)*cos(thetaa_mod(i,1)*q*x)* ...

cos(pi*(2*thetaa_mod(i,2)+1)*z) + ...
thetab(i)*cos(thetab_mod(i,1)*q*x)*...
sin(2*pi*thetab_mod(i,2)*z);

end

u = -diff(psif,z);
w = diff(psif,x);
lapp2 = diff(w,x)-diff(u,z);
lapp4 = diff(lapp2,z,2) + diff(lapp2,x,2);
lapt2 = diff(thetaf,x,2) + diff(thetaf,z,2);

% define Momentum Balance and Energy Balance
momentum = 1/sigma*(-diff(lapp2,t)+...

diff(u*diff(u,x)+w*diff(u,z),z)- ...
diff(u*diff(w,x)+w*diff(w,z),x))+ ...
lapp4+diff(thetaf,x);

energy = diff(thetaf,t)+u*diff(thetaf,x)+ ...
w*diff(thetaf,z)-lapt2 - Ra*diff(psif,x);

% integrate
shift = 0;
for i=1:num_mod

izmom = int(momentum*sin(psi_mod(i,1)*q*x)* ...
cos(pi*(2*psi_mod(i,2)+1)*z),z,-1/2,1/2);
ixmom = int(izmom,x,0,pi/q);
eq(1+shift) = ixmom;
izenA = int(energy*cos(thetaa_mod(i,1)*q*x)* ...
cos(pi*(2*thetaa_mod(i,2)+1)*z),z,-1/2,1/2);
ixenA = int(izenA,x,0,pi/q);
eq(2+shift) = ixenA;
izenB = int(energy*cos(thetab_mod(i,1)*q*x)* ...
sin(2*pi*thetab_mod(i,2)*z),z,-1/2,1/2);
ixenB = int(izenB,x,0,pi/q);
eq(3+shift) = ixenB;
shift = 3;

end
equ1=subs(eq(1),{diff(psi(1),t),psi(1),psi(2),...
thetaa(1),thetaa(2),thetab(1),thetab(2),sigma,Ra,q}, ...

R



{Xd,x,u,y,v,z,w,10,5*(3/2*pi^2)^3/q^2,double(sqrt(1/2)*pi)});
equ2=subs(eq(2),{diff(thetaa(1),t),psi(1),psi(2), ...
thetaa(1),thetaa(2),thetab(1),thetab(2),sigma,Ra,q},...
{Yd,x,u,y,v,z,w,10,5*(3/2*pi^2)^3/q^2,double(sqrt(1/2)*pi)});
equ3=subs(eq(3),{diff(thetab(1),t),psi(1),psi(2), ...
thetaa(1),thetaa(2),thetab(1),thetab(2),sigma,Ra,q}, ...
{Zd,x,u,y,v,z,w,10,5*(3/2*pi^2)^3/q^2,double(sqrt(1/2)*pi)});
equ4=subs(eq(4),{diff(psi(2),t),psi(1),psi(2), ...
thetaa(1),thetaa(2),thetab(1),thetab(2),sigma,Ra,q}, ...
{Ud,x,u,y,v,z,w,10,5*(3/2*pi^2)^3/q^2,double(sqrt(1/2)*pi)});
equ5=subs(eq(5),{diff(thetaa(2),t),psi(1),psi(2), ...
thetaa(1),thetaa(2),thetab(1),thetab(2),sigma,Ra,q}, ...
{Vd,x,u,y,v,z,w,10,5*(3/2*pi^2)^3/q^2,double(sqrt(1/2)*pi)});
equ6=subs(eq(6),{diff(thetab(2),t),psi(1),psi(2),...
thetaa(1),thetaa(2),thetab(1),thetab(2),sigma,Ra,q}, ...
{Wd,x,u,y,v,z,w,10,5*(3/2*pi^2)^3/q^2,double(sqrt(1/2)*pi)});
g(1) = simple(solve(equ1,Xd));
g(2) = simple(solve(equ2,Yd));
g(3) = simple(solve(equ3,Zd));
g(4) = simple(solve(equ4,Ud));
g(5) = simple(solve(equ5,Vd));
g(6) = simple(solve(equ6,Wd));

S



tangentspace.m

function tsp = tangentspace()
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% This tool calculates the tangent space of a dynamical system (9D) %
% Input variables: none %
% By Franz Bozsak %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% head
clc
clear all
close all

% specify dimension of the system
dim = 9;

% specify variables

syms r b sigma c1 c2

for k=1:dim
x(k) = sym(sprintf(’x%d’, k));
dx(k,1) = sym(sprintf(’dx%d’, k));

end

% specify equations of the dynamical system

dynsys = [%put in euations here!%];

% calculate the jacobian
jac0 = jacobian(dynsys,x);

% calculate the tangent space
tsp = jac0*dx;

T
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