Physics of Information Physics 2⁸A Syllabus (Winter)

Instructor: Prof. Jim Crutchfield (chaos@ucdavis.edu; http://csc.ucdavis.edu/~chaos) WWW: http://csc.ucdavis.edu/~chaos/courses/ncaso/

Contents

1	Firs	st Lecture: Overview	1
2	Self-Organization		
	2.1	Lecture 2: The Big Picture	2
	2.2	Lecture 3: Example Dynamical Systems	3
	2.3	Lecture 4: The Big, Big Picture I	3
	2.4	Lecture 5: The Big, Big Picture II	3
	2.5	Lecture 6: Mechanism of Chaos: Stable Instability	4
	2.6	Lecture 7: Example Chaotic Maps (that you can analyze)	4
	2.7	Lecture 8: Pattern Formation I	4
	2.8	Lecture 9: Pattern Formation II	5
3	From Determinism to Stochasticity		
	3.1	Lecture 10: Probability Theory of Dynamical Systems	5
	3.2	Lecture 11: Stochastic Processes	5
	3.3	Lecture 12: Measurement Theory I	6
	3.4	Lecture 13: Measurement Theory II	6
4	Info	ormation Processing	6
	4.1	Lecture 14: Entropies	7
	4.2	Lecture 15: Information in Processes I	7
	4.3	Lecture 16: Information in Processes II	7
	4.4	Lecture 17: Memory in Processes I	7
	4.5	v	8
	4.6	Lecture 19: Rate Distortion Theory I	8
	4.7	Lecture 20: Rate Distortion Theory II	8

1 First Lecture: Overview

Readings (available via course website):

• Chaos, JP Crutchfield, JD Farmer, NH Packard, RS Shaw, Scientific American **255** (1986) 46–57.

• Odds, Stanislaw Lem, New Yorker **54** (1978) 38–54.

Topics:

- 1. Introduction and motivations
- 2. Physics of Information 256A: Dynamics, Self-Organization, Measurement Theory, Information Theory
- 3. Physics of Computation 256B
- 4. Survey interests, background, and abilities
- 5. Course logistics
- 6. Exams
- 7. CMPy Labs

2 Self-Organization

Reading: Nonlinear Dynamics and Chaos, Strogatz (NDAC), and Course Lecture Notes

Theme: Forms of Randomness, Order, and Intrinsic Instability

- 1. Nonlinear Dynamics:
 - (a) Qualitative dynamics
 - (b) ODEs and maps
 - (c) Bifurcations
 - (d) Stability, instability, and chaos
 - (e) Quantifying (in)stability
- 2. Pattern-forming systems:
 - (a) Instability and stabilization of patterns
 - (b) Cellular automata, map lattices, spin systems

2.1 Lecture 2: The Big Picture

Reading: *NDAC*, Chapters 1 and 2.

Topics:

- 1. Pendulum demo
- 2. Discuss Chaos and Odds readings and homework
- 3. Qualitative dynamics: A geometric view of behavior
- 4. State space
- 5. Flows
- 6. Attractors
- 7. Basins
- 8. Submanifolds
- 9. Concrete, but simple example: One-dimensional flows

Homework: Assign Week 0's homework today. Everyday unpredictability; see handout or website. Due in one week, but be prepared to discuss at next meeting.

2.2 Lecture 3: Example Dynamical Systems

Reading: *NDAC*, Sections 6.0-6.7, 7.0-7.3, and 9.0-9.4.

Topics:

- 1. Continuous-time ODEs
 - (a) 2D flows: Fixed points (Sec. 6.0-6.4)
 - (b) 2D flows: Limit cycles (Sec. 7.0-7.3)
 - (c) 3D flows: Chaos in Lorenz (Sec. 9.0-9.4)
 - (d) Simulation demo
- 2. From continuous to discrete time (Sec. 9.4)
 - (a) Poincaré maps and sections
 - (b) Lorenz ODE to cusp map
 - (c) Rössler ODE to logistic map (pp. 376–379)
 - (d) Discrete-time maps

2.3 Lecture 4: The Big, Big Picture I

Reading: *NDAC*, Chapters 3 and 8 and Sec. 10.0-10.4.

Topics:

- 1. Qualitative dynamics: Space of all dynamical systems
- 2. Example: Bifurcations of one-dimensional flows
 - (a) Saddle node
 - (b) Transcritical
 - (c) Pitchfork
- 3. Catastrophe theory
 - (a) Catastrophes: Fixed point to fixed point bifurcation
 - (b) Example: Cusp Catastrophe
 - (c) Catastrophe theory classification of fixed point bifurcations

Homework: Collect Week 0's, assign Week 1's today.

2.4 Lecture 5: The Big, Big Picture II

Reading: NDAC, Chapters 3 and 8 and Sec. 10.0-10.4.

Topics:

- 1. Bifurcations in discrete-time maps: Logistic map
- 2. Fixed point to limit cycle
- 3. Phenomenon and calculation
- 4. Limit cycle to limit cycle
- 5. Phenomenon and calculation

- 6. Routes to chaos: Period-doubling cascade
- 7. Phenomenon and calculation
- 8. Band-merging
- 9. Periodic windows and intermittency
- 10. Simulation demo

2.5 Lecture 6: Mechanism of Chaos: Stable Instability

Reading: *NDAC*, Sec. 12.0-12.3, 9.3, and 10.5.

Topics:

- 1. Chaotic mechanisms: Stretch and fold
- 2. Baker's map
- 3. Cat map (and stretch demo)
- 4. Henon map: stretch-fold and self-similarity
- 5. Roessler attractor branched manifold
- 6. Dot spreading: Roessler and Lorenz ODEs
- 7. Lyapunov characteristic exponents (LCEs)
- 8. Time to unpredictability
- 9. Dissipation rate
- 10. Attractor LCE classification
- 11. Chaos defined

Homework: Collect Week 1's, assign Week 2's today.

2.6 Lecture 7: Example Chaotic Maps (that you can analyze)

Reading: NDAC, Chapter 10.

Topics:

- 1. Shift map
- 2. LCEs for maps
- 3. Tent map
- 4. Logistic map
- 5. LCE view of period-doubling route to chaos
- 6. Period-doubling self-similarity
- 7. Renormalization group analysis of scaling

2.7 Lecture 8: Pattern Formation I

Reading: Lecture Notes.

Topics:

1. Review last lecture.

- 2. Spatially Extended Dynamical Systems
- 3. Synchronous Cellular Automata
- 4. Lattice Maps: Logistic Lattice and Dripping Handrail

Homework: Collect Week 2's, assign Week 3's today.

2.8 Lecture 9: Pattern Formation II

Reading: Lecture Notes.

Topics:

- 1. Review last lecture.
- 2. Asynchronous Cellular Automata
- 3. Spin Systems

3 From Determinism to Stochasticity

Reading: Lecture Notes.

Theme: Stochasticity and Measurement

- 1. Probability Theory of Dynamical Systems
- 2. Stochastic Processes
- 3. Measurement Theory

3.1 Lecture 10: Probability Theory of Dynamical Systems

Reading: Lecture Notes.

Topics:

- 1. Probability theory review
- 2. Dynamical evolution of distributions
- 3. Invariant measures
- 4. Examples

Homework: Collect Week 3's, assign Week 4's today.

3.2 Lecture 11: Stochastic Processes

Reading: Lecture Notes.

Topics:

- 1. Review last lecture.
- 2. Processes

- 3. Markov chains
- 4. Statistical equilibrium
- 5. Hidden Markov models
- 6. Examples: Fair coin, periodic, golden mean, even, and others

3.3 Lecture 12: Measurement Theory I

Reading: Lecture Notes.

Topics:

- 1. Review last lecture.
- 2. State-space partitioning
- 3. Orbit and sequence spaces
- 4. Good instruments and informative measurements

Homework: Collect Week 4's, assign Week 5's today.

3.4 Lecture 13: Measurement Theory II

Reading: Lecture Notes.

Topics:

- 1. Review last lecture.
- 2. Markov partitions in 1D
- 3. Generating partitions in 1D
- 4. Example: 1D maps
- 5. Generating partitions in 2D
- 6. Example: 2D Cat map

4 Information Processing

Reading: Elements of Information Theory, Cover and Thomas (EIT), and Computational Mechanics Reader, JPC (CMR)

Theme: Information, Uncertainty, and Memory

- 1. Entropies
- 2. Communication Channel (and coding theorems)
- 3. Mutual Information and Information metric
- 4. Excess Entropy
- 5. Transient Information
- 6. Connection to Dynamics: Entropy rate and LCEs

4.1 Lecture 14: Entropies

Reading: *EIT*, Chapters 1 and 2.

Topics:

- 1. Motivation: Information \neq Energy
- 2. Information as uncertainty and surprise
- 3. Information sources: Ignorance of forces or initial conditions, deterministic chaos, and ...?
- 4. Axioms for a measure of information
- 5. Entropy function
- 6. Convexity
- 7. Joint and Conditional Entropy
- 8. Mutual information
- 9. Examples

Homework: Collect Week 5's, assign Week 6's today.

4.2 Lecture 15: Information in Processes I

Reading: EIT, Sec. 5-5.4 and 8-8.5 and Chapter 4.

Topics:

- 1. Communication channels
- 2. Coding theorems
- 3. Examples

4.3 Lecture 16: Information in Processes II

Reading: EIT, Sec. 5-5.4 and 8-8.5 and Chapter 4.

Topics:

- 1. Entropy rates for Markov chains
- 2. Entropies for times series
- 3. Connection to Dynamics: Entropy rate and LCEs

Homework: Collect Week 6's, assign Week 7's today.

4.4 Lecture 17: Memory in Processes I

Reading: CMR article RURO.

Topics:

- 1. Entropy convergence
- 2. Excess entropy
- 3. Examples

4.5 Lecture 18: Memory in Processes II

Reading: CMR article RURO.

Topics:

- 1. Generalized synchronization
- 2. Transient information
- 3. Examples

Homework: Collect Week 7's, assign Week 8's today.

4.6 Lecture 19: Rate Distortion Theory I

Reading: EIT, Chapter 10.

Topics:

1. Rate distortion theory

4.7 Lecture 20: Rate Distortion Theory II

Reading: EIT, Chapter 10.

Topics:

1. Rate distortion theory

Homework: Collect Week 8's.