
Example Chaotic Maps 
(that you can analyze)

Reading for this lecture:

    NDAC, Sections10.5-10.7.
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Example 1D Maps ...

Shift Map:
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xn ∈ [0, 1]

Fixed Point: x
∗

= 0

f ′(x∗) = 2 > 1Unstable:

Period-2 Orbit: {x∗} = {1/3, 2/3}

(f2)′(x∗) = 4 > 1Unstable:

All periodic orbits unstable
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xn+1 = f(xn) = 2xn (mod 1)
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Example 1D Maps ...

Shift Map:
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xn+1 = 2xn (mod 1)

xn ∈ [0, 1]

xn = 2n
x0 (mod 1)Solvable!

Chaotic mechanism:
   shift up least significant digits

x0 = 0.1101010111...

x1 = 0.1010101110...
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0
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Example 1D Maps ...

Lyapunov Characteristic Exponent for 1D Maps:
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|δN | ∼ |δ0|e
λ·N

xn+1 = f(xn)

or, Definition: LCE

�1 � f �(x0)�0

�2 � f �(x1)�1

�2 � f �(x1)f �(x0)�0...

λ = lim
N → ∞

| |δ0 | | → 0

log2
δN

δ0



Example 1D Maps ...
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λ = lim
N→∞
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λ = lim
N→∞

1

N

N−1∑

n=0

log2 |f
′(xn)|

δ0 → 0

(fN )′(x0) = f ′(xN−1)(f
N−1)′(x0) = f ′(x0)f

′(x1) · · · f
′(xN−1)

λ < 0 stable

λ > 0 unstable

Lyapunov Characteristic Exponent for 1D Maps ...



Example 1D Maps ...

Back to Shift Map: Its LCE ...
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Independent of state:

λ = lim
N→∞

1

N

N−1∑

n=0

log2 |f
′(xn)|

Amplification per step
   (or bits of resolution lost):

λ = 1

f ′(x) = 2
0 1

0

1

∆x

2∆x

xn+1 = f(xn) = 2xn (mod 1)



Example 1D Maps ...

Tent Map:
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xn ∈ [0, 1]

a ∈ [0, 2]Slope:
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{

axn, 0 ≤ xn ≤ 1

2

a(1 − xn), 1
2

< xn ≤ 1

Height at max:
a
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Example 1D Maps ...

Tent Map Bifurcation Diagram:
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Example 1D Maps ...

Tent Map ...

Lecture 7: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield

Stable fixed point: x
∗

= 0, 0 ≤ a < 1

Unstable fixed points: {0,
a

1 + a
}, 1 ≤ a ≤ 2

All periodic orbits unstable: p > 1

xn0 1
0

1

xn+2

No periodic windows



Example 1D Maps ...

Tent Map LCE:
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λ = lim
N→∞

1

N

N−1∑

n=0

log2 |±a| = log2 a

λ = lim
N→∞

1

N

N−1∑

n=0

log2 |f
′(xn)|



Example 1D Maps ...

Tent Map LCE:

Lecture 7: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield

λ = lim
N→∞

1

N

N−1∑

n=0

log2 |±a| = log2 a

-1

-0.5

0

0.5

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2

Chaotic

Periodic: P-1



Example 1D Maps ...

Logistic map:
   State space:
   Parameter (height):
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xn ∈ [0, 1]
xn+1 = rxn(1 − xn)

r ∈ [0, 4]

1

1

0
0

xn

xn+1



Example 1D Maps ...

Logistic map bifurcation diagram ...
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Example 1D Maps ...

Logistic map LCE:
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f ′(x) = r(1 − 2x)Local stability depends on state:

λ = lim
N→∞

1

N

N−1∑

n=0

log2 |f
′(xn)|

λ = lim
N→∞

1

N

N−1∑

n=0

log2 |r(1 − 2xn)|

Period 1: λ = log2 rx
∗

= 0, 0 ≤ r ≤ 1

Period 1: x
∗

=
r − 1

r
, 1 ≤ r ≤ 3 λ = log2 |2 − r|

Bifurcations: λ = 0

Onset of chaos: λ = 0

Superstable: λ → −∞f ′(xi) = 0

f �(x�) = r

r = 2



Example 1D Maps ...

LCE for 1D Maps ... an aside on the Ergodic Theorem
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Rather than time average:

λ = lim
N→∞

1

N

N−1∑

n=0

log2 |f
′(xn)|

Average over attractor’s distribution: Pr(x), x ∈ Λ

Invariant distribution: Pr(x) = f “ ◦ ” Pr(x)

λ =

∫
Λ

dx Pr(x) log2 |f
′(x)|

State-space averaged LCE:



Example 1D Maps ...

Logistic map LCE:
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r = 4

Invariant distribution:

Pr(x) =
1

π

√

x(1 − x)

λ =

∫ 1

0

dx
log2 |4 − 8x|

π
√

x(1 − x)

10

− log2 Pr(x)

f(x)

x

λ = 1 bit per step



Example 1D Maps ...

LCE view of period-doubling route to chaos:
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Example 1D Maps ...
Logistic map bifurcation diagram self-similarity
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Example 1D Maps ...

Bifurcation Theory of 1D Maps ...
   Scaling analysis of period-doubling cascade:
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δ = lim
n→∞

∆rn

∆rn+1

= 4.669 . . .

α = lim
n→∞

dn

dn+1

= −2.5029 . . .

Universal constants:

0.0

1.0

{xn}

3.0 4.0

r2ss r4ss r8ss

∆r1 ∆r2

d1

d2

d3

x = 1/2



Example 1D Maps ...
Bifurcation Theory of 1D Maps ...
   Renormalization group analysis of period-doubling:
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r0 → r1

αx ← x

αy ← y
fr0(x)

f2
r1(x)

↵ < 0 , flip|↵| > 1



Example 1D Maps ...
Bifurcation Theory of 1D Maps ...
   Renormalization group analysis of period-doubling ...
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f(x, r0) ≈ αf2(
x

α
, r1)

f2(
x

α
, r1) ≈ α2f4(

x

α2
, r2)

...

f(x, r0) ≈ αnf (2n)(
x

αn
, rn)



Example 1D Maps ...
Bifurcation Theory of 1D Maps ...
   Renormalization group analysis of period-doubling ...
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Universal Map:

g0(x) = lim
n→∞

αnf (2n)(
x

αn
, rn)

x ∼ xmax
for



Example 1D Maps ...
Bifurcation Theory of 1D Maps ...
   Renormalization group analysis of period-doubling ...
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Limiting functional equation:  (              )

x ∼ xmax
r∞ : f(x, r∞) ≈ αf2(

x

α
, r∞)

g(x) = αg
2

(

x

α

)

g(0) = 0 & g
′(0) = 0

for

xmax = 0

Boundary conditions:



Example 1D Maps ...
Bifurcation Theory of 1D Maps ...
   Renormalization group analysis of period-doubling ...
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g(x) = αg
2

(

x

α

)

g(0) = 0 & g
′(0) = 0

Taylor expansion:

α = −2.5029 . . .

δ = 4.669 . . .

g(x) = a + bx2 + cx4 + · · ·

Parameter rescaling: (more work)

Find:

Find:

How to solve?

g(x) even

with



Reading for next lecture:

    Lecture Notes.
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Example 1D Maps ...


