Mechanisms of Chaos: Stable Instability

Reading for this lecture:

NDAC, Sec. 12.0-12.3, 9.3, and 10.5.

Unpredictability:

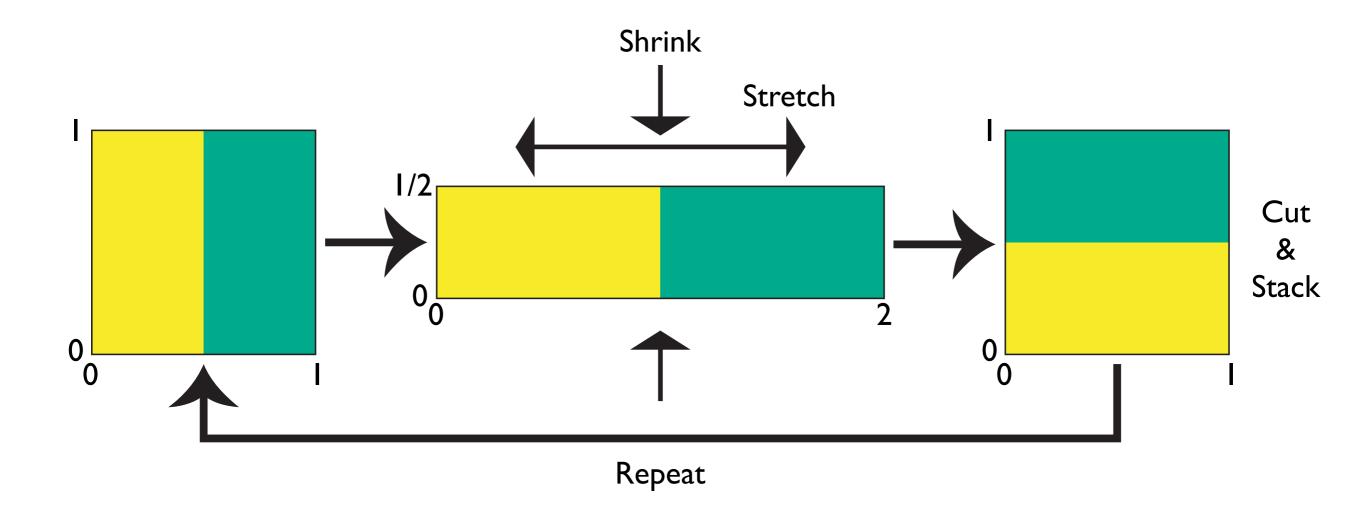
Orbit complicated: difficult to follow Repeatedly convergent and divergent Net amplification of small variations

What geometry produces this?

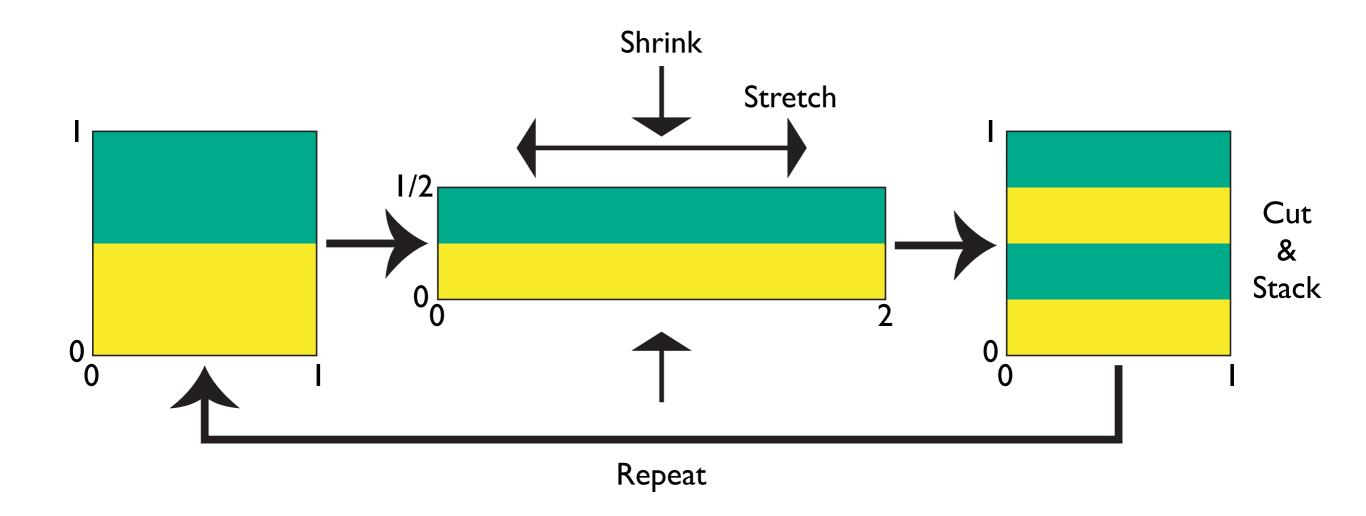
Stretch and fold:

Flow stretches state space
But to be stable, must be done in a compact region
Must fold back into region

Baker's transformation: kneading state space



Baker's transformation ... kneading state space



Baker's transformation ...

2D Baker's Map:

$$(x_n, y_n) \in [0, 1] \times [0, 1]$$

$$x_{n+1} = 2x_n \pmod{1}$$

$$y_{n+1} = \begin{cases} \frac{1}{2}y_n, & x_n \leq \frac{1}{2} \\ \frac{1}{2} + \frac{1}{2}y_n, & x_n > \frac{1}{2} \end{cases}$$

Baker's transformation ...

$$A = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

Calculate:

$$\lambda_1 = 2$$

$$\lambda_1=2$$
 Stretch $\vec{v}_1=(1,0)$ Only horizontal

$$\lambda_2 = 1/2$$

$$\lambda_2=1/2$$
 Shrink $\vec{v}_2=(0,1)$ Only vertical

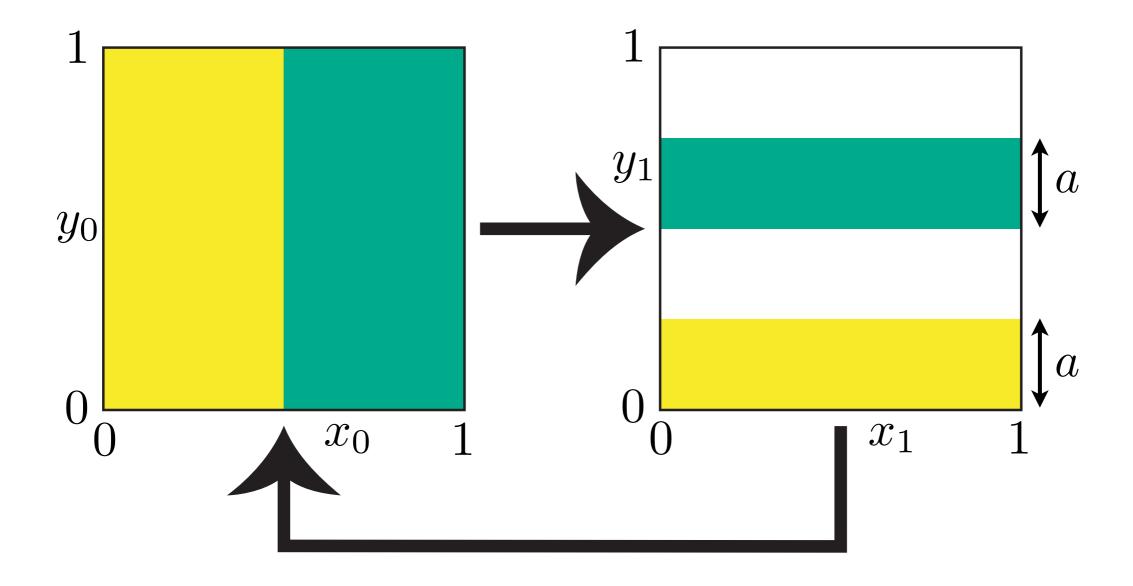
$$Tr(A) = 5/2$$

$$Det(A) = 1$$

 $\mathrm{Det}(A) = 1$ Area preserving: No attractor per se

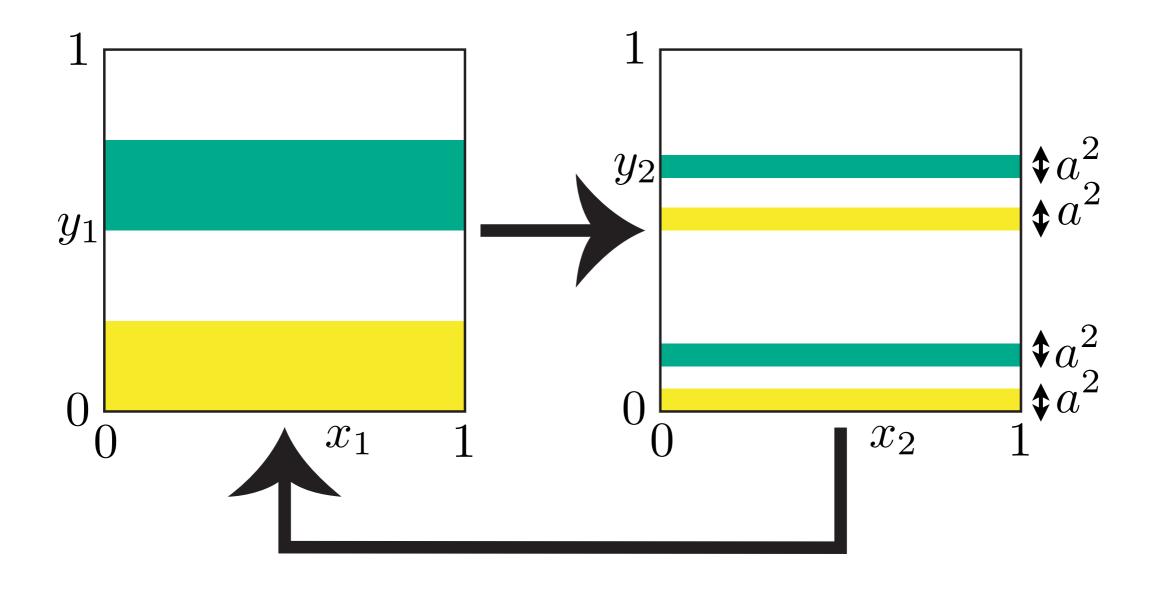
Independent of \vec{x}

Dissipative Baker's Map:



Mechanisms of Chaos ...

Dissipative Baker's Map ... again!



Dissipative Baker's Map ...

$$x_{n+1} = 2x_n \pmod{1}$$

$$y_{n+1} = \begin{cases} ay_n, & x_n \le \frac{1}{2} \\ \frac{1}{2} + ay_n, & x_n > \frac{1}{2} \end{cases}$$

$$a \in \left[0, \frac{1}{2}\right]$$

Dissipative Baker's Map ...

Stability?
$$A = \begin{pmatrix} 2 & 0 \\ 0 & a \end{pmatrix}$$

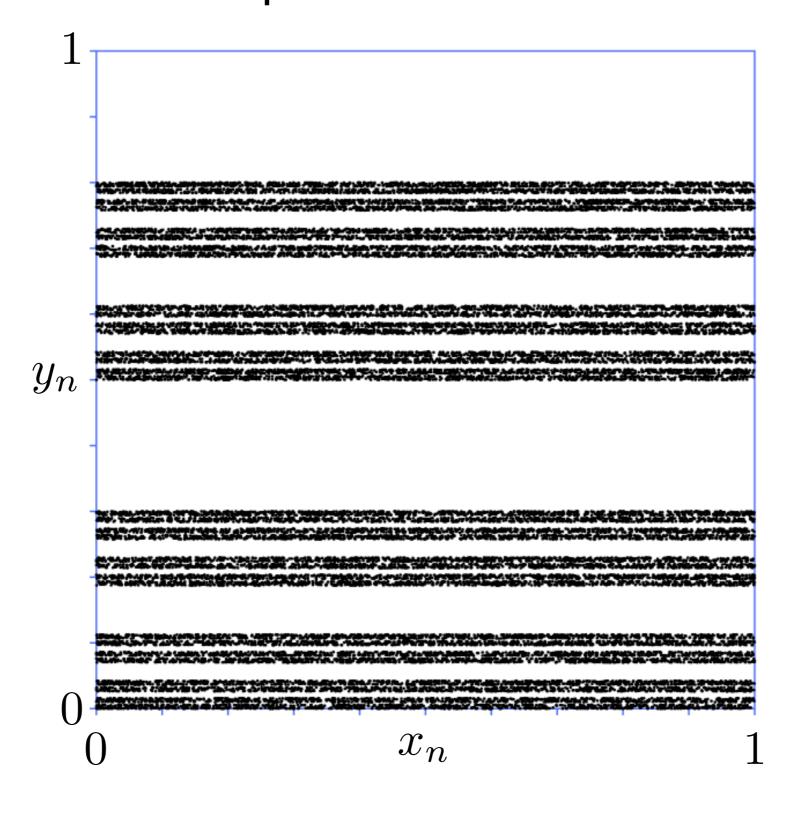
Calculate:

$$\lambda_1=2$$
 $\vec{v}_1=(1,0)$ $\lambda_2=a$ $\vec{v}_2=(0,1)$ Independent of \vec{x}

$$\mathrm{Det}(A) = 2a$$
 Dissipative: $a < 1/2$ Area contraction

Attractor!

Dissipative Baker's Map Simulation: a = 0.3



Dissipative Baker's Map ...

Stability? (x,y) versus $(x+\epsilon,y+\delta)$

$$\Delta x_1 = 2(x_0 + \epsilon) - 2x_0 = 2\epsilon$$

$$\Delta y_1 = a(y_0 + \delta) - ay_0 = a\delta$$

$$\Delta x_n = 2^n \epsilon$$
 Exponential Growth of Errors

$$\Delta y_n = a^n \delta$$
 Exponential Stability

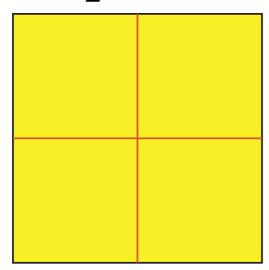
Dimension of a Set:

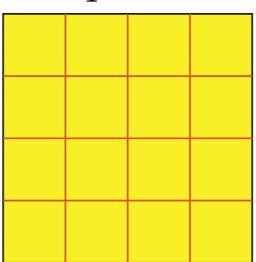
Number of boxes to cover set at given measurement resolution:

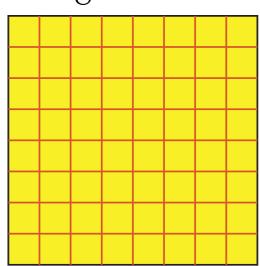
$$\epsilon = \frac{1}{2}$$
 $N = 4$

$$\epsilon = \frac{1}{4} \ N = 16$$

$$\epsilon = \frac{1}{2} \quad N = 4$$
 $\epsilon = \frac{1}{4} \quad N = 16$ $\epsilon = \frac{1}{8} \quad N = 64$







$$N(\epsilon = \frac{1}{2^n}) = \left(\frac{1}{2^n}\right)^{-2} = 2^{2n}$$
$$N(\epsilon) \propto \epsilon^{-2}$$

Generalizing

$$N(\epsilon) \propto \epsilon^{-d}$$

Or (Definition) dimension:
$$d = \lim_{\epsilon \to 0} -\frac{\log N(\epsilon)}{\log \epsilon}$$

Dimension of Dissipative Baker's Attractor ...

At iteration n:

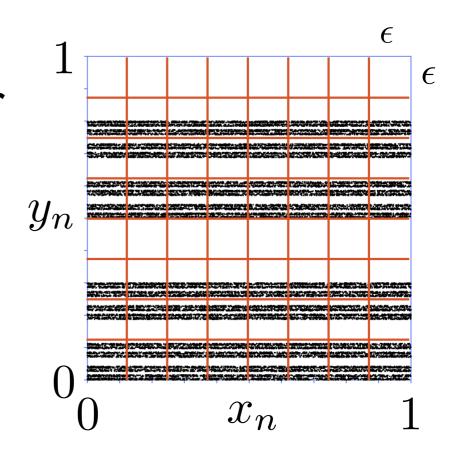
 2^n strips of thickness a^n

How many boxes $N(\epsilon)$ to cover attractor at resolution ϵ ?

Take:
$$\epsilon = a^n$$

Number of boxes for each strip: a^{-n}

$$N(\epsilon) = a^{-n} \times 2^n = \left(\frac{a}{2}\right)^{-n}$$



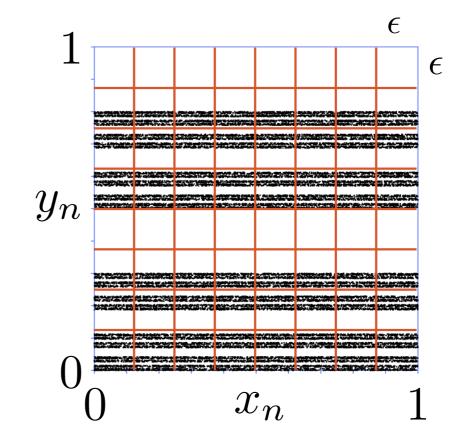
Dimension of Dissipative Baker's Attractor ...

Dimension:

$$d = \lim_{\epsilon \to 0} -\frac{\log N(\epsilon)}{\log \epsilon}$$

$$= \lim_{n \to \infty} -\frac{\log(a/2)^{-n}}{\log a^n}$$

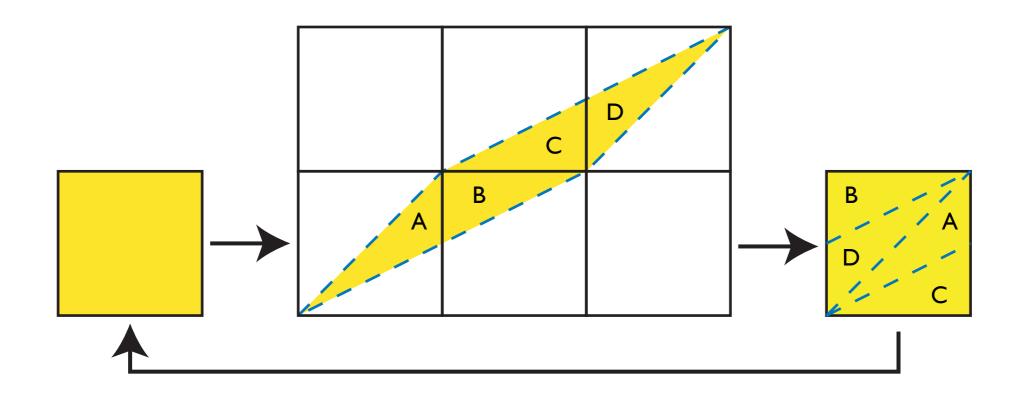
$$= 1 + \frac{\log \frac{1}{2}}{\log a}$$



$$a = 0.3 \Rightarrow d = 1.576... < 2$$
!

Area preserving: as $a \to \frac{1}{2}, d \to 2$

Cat map (aka toral automorphism): $(x, y) \in \mathbf{T}^2$ Intrinsic stretch/shrink directions



$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} \pmod{1}$$

Fixed point: $\vec{x}^* = (0,0)$

Cat map (aka Toral automorphism) ...

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} \pmod{1}$$

Calculate:
$$\lambda_1 =$$

$$\lambda_1 = rac{3+\sqrt{5}}{2} > 1$$
 stretch

$$\begin{array}{ll} \textbf{Calculate:} & \lambda_1=\frac{3+\sqrt{5}}{2}>1 \quad \text{stretch} & \vec{v}_1=(\frac{1+\sqrt{5}}{2},1) \\ & \lambda_2=\frac{3-\sqrt{5}}{2}<1 \quad \text{shrink} & \vec{v}_2=(\frac{1-\sqrt{5}}{2},1) \end{array}$$

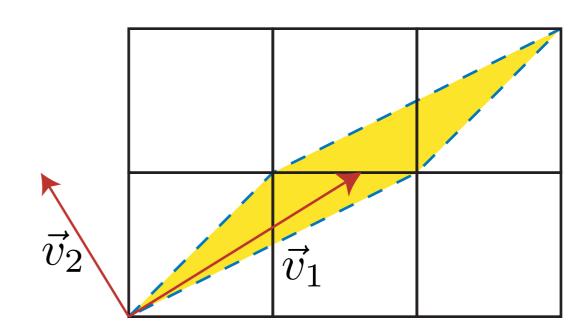
$$\vec{v}_1 = (\frac{1+\sqrt{5}}{2}, 1)$$

$$\vec{v}_2 = (\frac{1 - \sqrt{5}}{2}, 1)$$

$$Tr(A) = 3$$

$$\mathrm{Det}(A) = 1$$
 area preserving

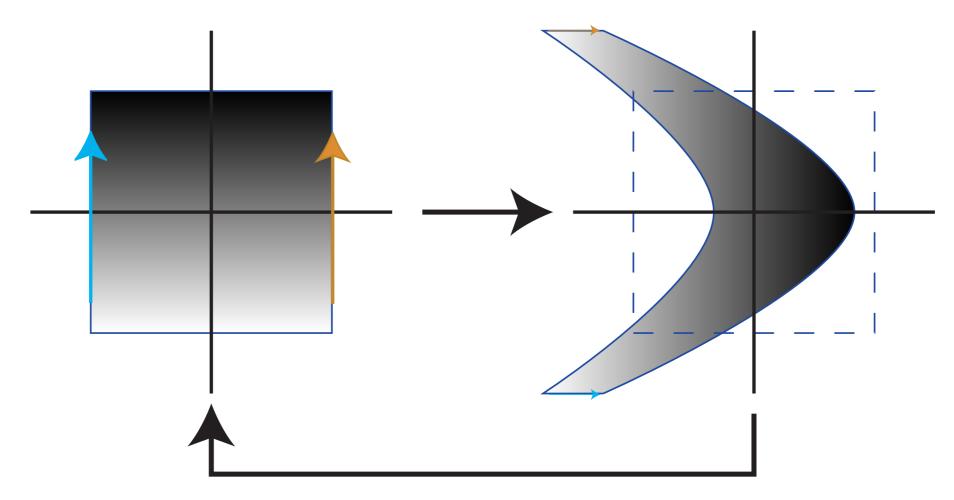
Independent of \vec{x}



Hénon map:
$$(x,y) \in \mathbf{R}^2$$

$$x_{n+1} = y_n + 1 - ax_n^2$$

$$y_{n+1} = bx_n$$



Stretch and fold depend on location

Lecture 6: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield

Hénon map ...

Stretch & fold depend on location:

Jacobian:

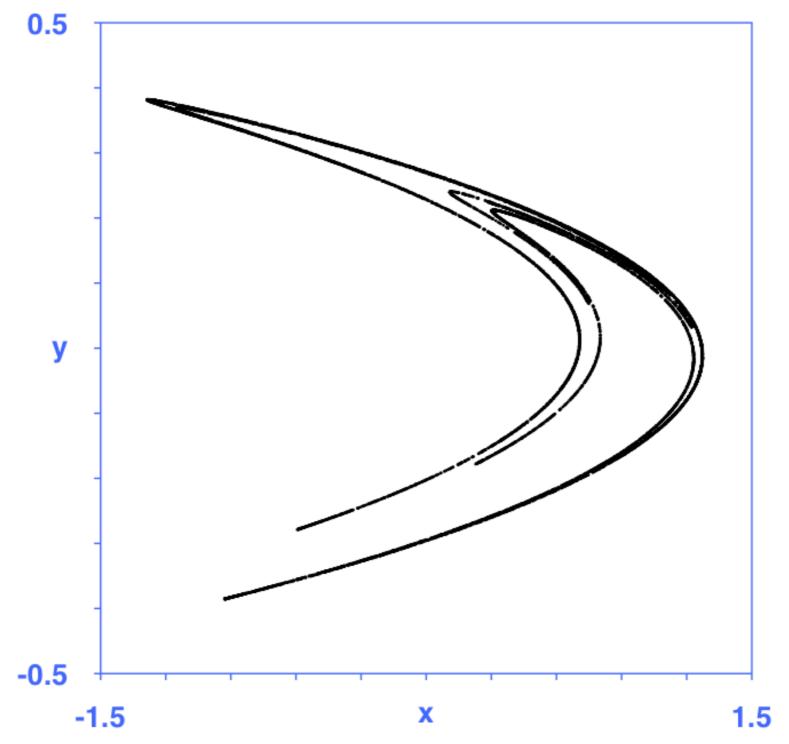
$$A = \begin{pmatrix} -2ax_n & 1\\ b & 0 \end{pmatrix}$$

Dissipative (and orientation reversing):

$$Det(A) = -b$$

Hénon Attractor:

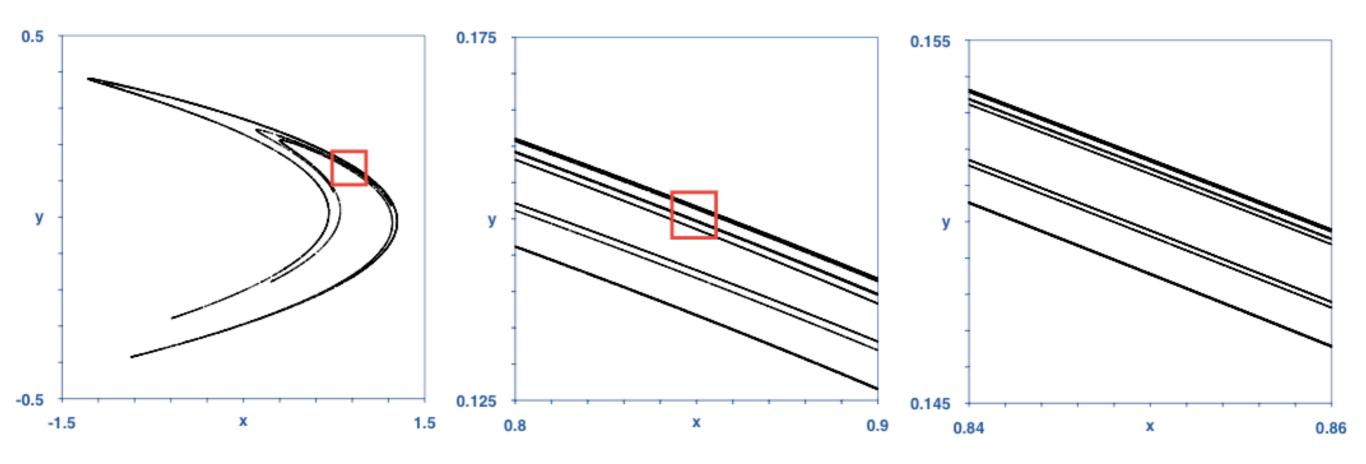
Control parameters: (a, b) = (1.4, 0.3)



Lecture 6: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield

Mechanisms of Chaos ... Henon Attractor ...

Self-similar:

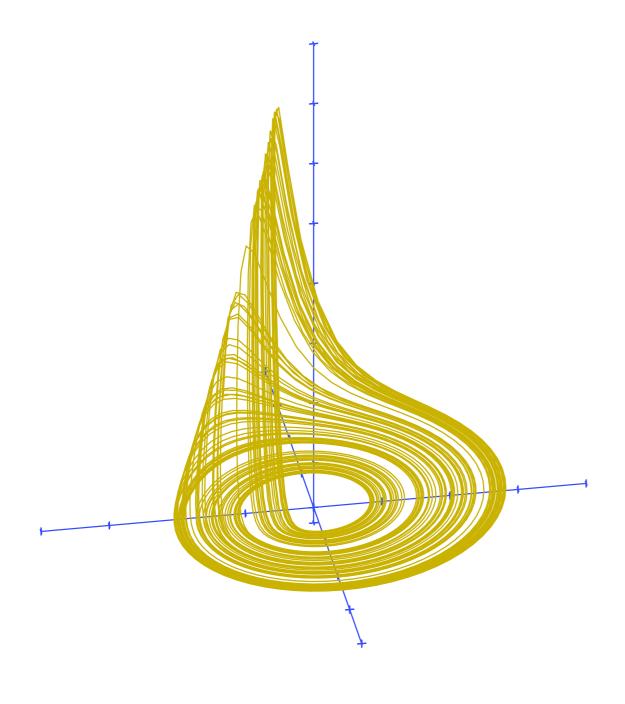


Self-similar attractor = Dissipation + Instability

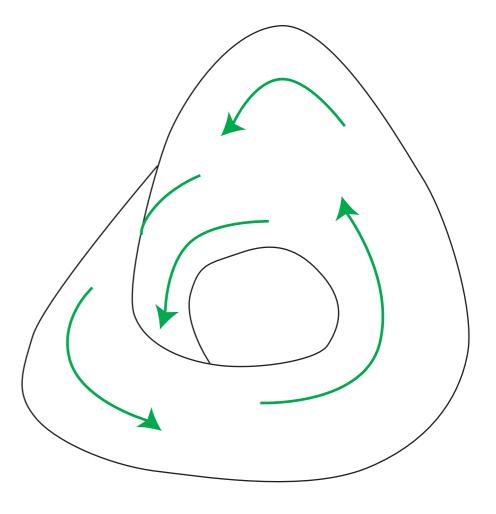
Lecture 6: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield

Mechanisms of Chaos ... How does the stretch & fold mechanism work in ODEs?

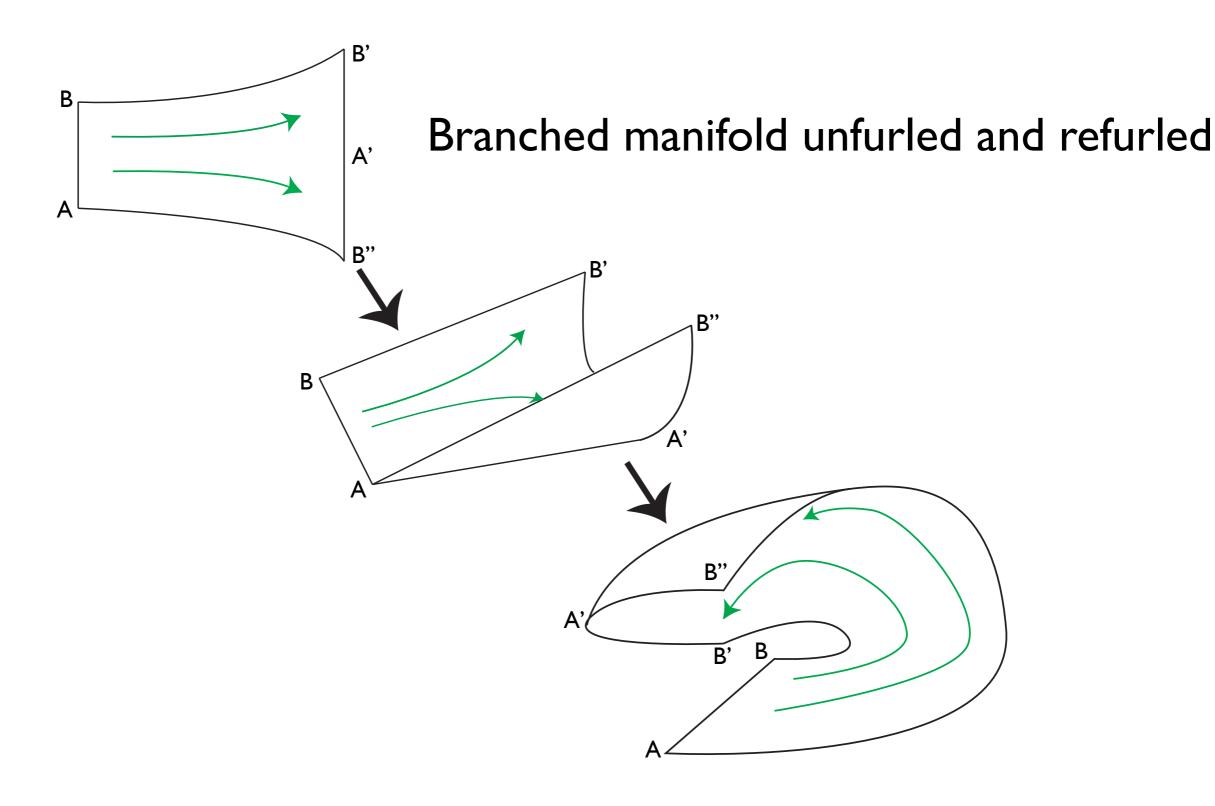
Rössler Chaotic Attractor:



Branched manifold:



Rössler Chaotic Attractor ...



Rössler stability + instability: Dot spreading demo (ds)

```
Time step = 0.03
Remembered trajectory = 10000
Orient
3000 e
nEns = 100000
IC = (0,-7,0)
radius = .I
I, I, I
```

Lorenz stability + instability: Dot spreading demo (ds)

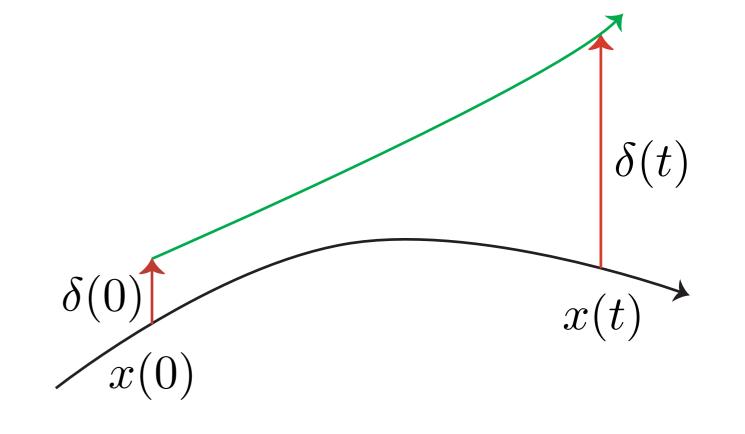
```
Time step = .005
Remembered trajectory = 10000
Orient
1000 e
nEns = 60000
IC = (5,5,5)
radius = .05
I, I, I
```

Quantifying instability: Growth-of-error model:

$$||\delta(t)|| \sim ||\delta(0)|| e^{\lambda t}$$

Or

$$\lambda \sim t^{-1} \ln \frac{||\delta(t)||}{||\delta(0)||}$$



Lyapunov Characteristic Exponent (LCE):

$$\lambda = \lim_{\substack{t \to \infty \\ ||\delta(0)|| \to 0}} \frac{1}{t} \log_2 \frac{||\delta(t)||}{||\delta(0)||} \quad \delta(t) \text{ aligns with most unstable direction!}$$

 λ : Exponential rate of growth of errors Units: [bits per second]

Measurement Resolution: ϵ

Number of scale factors to locate initial state: $I_0 = -\log_2 \epsilon$ Resolution loss rate (bits per second): λ

Prediction horizon:
$$t_{
m unpredict} \sim rac{I_0}{\lambda}$$

Example:

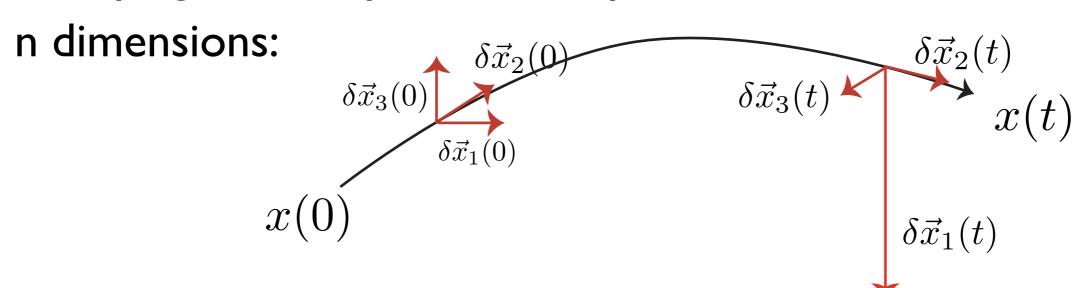
Loss rate: Factor of 2 each second: $\lambda = 1$ Measurement resolution: $\epsilon = 10^{-3}$

$$I_0 = 10 \text{ bits}$$
 $t_{\text{unpredict}} = 10 \text{ seconds}$

Thousand times higher resolution: $\epsilon = 10^{-6}$

$$I_0 = 20 \text{ bits}$$
 $t_{\text{unpredict}} = 20 \text{ seconds}$

Quantifying instability and stability ...



Lyapunov Characteristic Exponent Spectrum:

$$\chi = \{\lambda_1, \lambda_2, \dots, \lambda_n\}, \ \lambda_i \ge \lambda_{i+1}$$

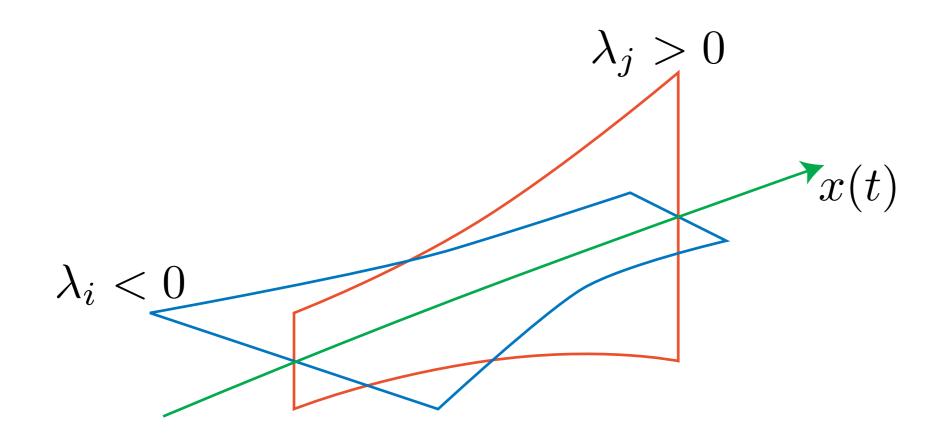
$$\lambda_i = \lim_{\substack{t \to \infty \\ ||\delta \vec{x}_i|| \to 0}} \frac{1}{t} \log_2 \frac{||\delta \vec{x}_i(t)||}{||\delta \vec{x}_i(0)||}$$

$$\{\delta \vec{x}_1, \delta \vec{x}_2, \dots, \delta \vec{x}_n\}, \delta \vec{x}_i \cdot \delta \vec{x}_j = 0, i \ne j$$

Quantifying instability and stability ... LCE Spectrum and Submanifolds:

$$\lambda_i < 0 \iff \text{stable manifold}$$

 $\lambda_i > 0 \iff \text{unstable manifold}$



LCE Spectrum: Key to characterizing attractors

Dissipation rate:

Divergence of vector field:

$$\nabla \cdot \vec{F}(\vec{x}) = \sum_{i=1}^{n} \left. \frac{\partial \vec{F}}{\partial x_i} \right|_{\vec{x}} = \text{Tr}(A(\vec{x}))$$

$$\mathcal{D} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \ \nabla \cdot \vec{F}(\vec{x}(t))$$

Theorem:
$$\mathcal{D} = \sum_{i=1}^{n} \lambda_i$$

$$\chi = \{\lambda_1, \lambda_2, \dots, \lambda_n\}, \ \lambda_i \ge \lambda_{i+1}$$

Dimension of attractor: $\chi = \{\lambda_1, \lambda_2, \dots, \lambda_n\}, \ \lambda_i \geq \lambda_{i+1}$

$$d = j + \frac{\sum_{i=1}^{j} \lambda_i}{|\lambda_{j+1}|}$$

j largest integer such that $\sum_{i=1}^{j} \lambda_i \geq 0$

(Conjectured to be true in most cases.)

Entropy of attractor (jumping ahead a little bit):

$$h_{\mu} = \sum_{\lambda_i > 0} \lambda_i$$

Rate of information production.

LCE Attractor Classification:

An attractor's LCE signature:

$$(\lambda_1, \lambda_2, \dots, \lambda_n), \ \lambda_i \geq \lambda_{i+1}$$

Constraints:

I.Attracting: $\mathcal{D} < 0$

(A)
$$\Rightarrow \sum_{i=1}^{n} \lambda_{i} < 0$$
 $\Rightarrow |\mathcal{D}| > h_{\mu}$ $\Rightarrow \lambda < 0$, for at least one i $\Rightarrow \left|\sum_{\lambda_{i} < 0}\right| > \sum_{\lambda_{i} > 0}$

2. If not fixed point, flow along trajectory neutrally stable:

$$\lambda_i = 0$$
, for at least one i

3. If chaotic:

$$\lambda_i > 0$$
, for at least one i

LCE Spectrum Attractor Classification ...

$$(\operatorname{sgn}(\lambda_1),\operatorname{sgn}(\lambda_2),\ldots,\operatorname{sgn}(\lambda_n))$$

Dimension n	LCE Spectrum	Attractor
I	(-)	Fixed Point
2	(-,-)	Fixed Point
2	(0,-)	Limit Cycle
3	(-,-,-)	Fixed Point
3	(0,-,-)	Limit Cycle
3	(0,0,-)	Torus
3	(+,0,-)	Chaotic
4	(0,0,0,-)	3-Torus
4	(+,0,0,-)	Chaotic 2-Torus
4	(+,+,0,-)	Hyperchaos

Definition of chaotic attractor:

- (I) Attractor: $\Lambda \subset \mathcal{X}$
 - (a) Invariant set: $\Lambda = \phi_T(\Lambda)$.
 - (b) Attracts an open set $U \subset \mathcal{X}$: $\Lambda \subset U$

$$\Lambda = \lim_{T \to \infty} \phi_T(U)$$

- (c) Minimal: no proper subset is also (a) & (b).
- (2) Aperiodic long-term behavior of a deterministic system with exponential amplification.
 - (2') Positive maximum LCE: $\lambda_{\max}(\Lambda) > 0$.
 - (2") Positive metric entropy: $h_{\mu}(\Lambda) > 0$.

Reading for next lecture:

NDAC, Sections 10.5-10.7.

Thursday Meeting Update

- Invite class to Dept Research
- Overlaps with Thursday class
- 12:10-12:50 PM, 432 Physics
- Then back to 195 Physics