
QUANTUM MECHANICS AND 
QUANTUM INFORMATION

John Mahoney - Natural Computation and Self-Organization 2016

reference: QCQI, Nielsen and Chuang



WHY DO WE NEED A QUANTUM 
THEORY?

• Atomic spectra 

• Photo electric effect 

• Stern Gerlach 

• Double slit experiment



MORE RECENTLY

Shor’s algorithm
commercial 

q-computers?

causal ambiguity Grover’s algorithm



GOALS

• What is a quantum state? 

• What does a quantum measurement look like? 

• What are quantum mixed states? 

• Difference btwn mixture and superposition? 

• What is quantum entropy? (von Neumann) 

• What is entanglement? (and relation to entropy)



RESEARCH IDEAS

• Entanglement is thought to underly much of the 
power of quantum computation. What is the role 
of entanglement in these representations? 

• Are there “quantum” processes that require no 
repr entanglement? or classical that do? 

• We think about representations of physical 
processes. Some quantum representations are 
more efficient. Are these “more natural”?



QUANTUM STATES

| i = ↵ |0i+ � |1i
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lives in a complex vector space 
Hilbert space

quantum amplitudes 
orthonormal basis

..just linear algebra
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QUANTUM STATES



QUANTUM STATES

This is the surface 
of a sphere!
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BLOCH SPHERE

“spin up”

“spin down”

*projective 
Hilbert space
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EVOLUTION: CLOSED SYSTEM

Unitary evolution

columns define 
ON-basis

overlaps maintained

maps one ONB 
to another ONB

…it’s just a big rotation



EVOLUTION: CLOSED SYSTEM

Schrodinger



EVOLUTION: CLOSED SYSTEM

Schrodinger



MEASUREMENT: PROJECTIVE

Observables modeled 
by Hermitian operators

m - outcomes 
P - projectors Born Rule

Spectral decomposition

Projectors are 
complete

How to compute 
probabilities



MEASUREMENT: PROJECTIVE

Post-measurement state

project 
and 

normalize



MEASUREMENT: PROJECTIVE

wikipedia-Stern-Gerlach



MEASUREMENT: PROJECTIVE

outcome +1 outcome -1
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EXPECTATION VALUE

This is the first time that the eigenvalues of M matter



MEASUREMENT: GENERAL

set of measurement operators

post-measurement state

probabilities



MEASUREMENT: POVM
(positive operator-valued measure)

set of measurement operators

probabilities

(operator) positive elements



DISTINGUISHABILITY
Given two non-orthogonal states can we distinguish them?

By completeness and first relation,

by positivity
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DISTINGUISHABLE?

perfect distinguishability! 
…but not every time



MIXED STATES
Physical situation: input to SG is random choice: up, down. 

How can we model this state with a quantum state?

SG output is random: +1, -1.

We know how to model this:



MIXED STATES
What if we measured the random input with a different SG?

Apply this measurement to our model?..

SG output is random: +1, -1.



MIXED STATES
What if we measured the random input with a different SG?

Apply this measurement to our model?..

SG output is random: +1, -1.

our notion of state is insufficient



MIXED STATES

Density operator is a trace 1, positive operator.

Our example: 
probabilistic mixture of up and down



MIXED STATES: NON-UNIQUE
Our example: 

probabilistic mixture of up and down



MIXED STATES: BLOCH BALL



MIXED STATES: NON-UNIQUE
Our example: 

probabilistic mixture of up and down



MIXED STATES: EVOLUTION



MIXED STATES: MEASUREMENT

set of measurement operators

post-measurement state

probabilities



MIXED STATES: ENTROPY

von Neumann entropy

Minimal randomness in complete projective measurement



CODING

Shannon’s noiseless coding theorem: 
{X} is an i.i.d. information source with (Shannon) entropy rate H(X). 

For R > H(X), there exists a reliable compression scheme. 
For R < H(X) there is no reliable scheme.

Schumacher’s noiseless coding theorem: 
{\rho} is an i.i.d. information source with (von Neumann) entropy rate S(\rho). 

For R > S(\rho), there exists a reliable compression scheme. 
For R < S(\rho) there is no reliable scheme.

Coding theorem gives quantum entropy physical meaning.



NEXT TIME…

• Composite systems 

• Entanglement 

• Quantum analog of C_mu 

• Operational meaning in terms of channel 

• Candidate quantum encoding construction 

• Relation to cryptic order 

• Computational methods / illustration



COMPOSITE SYSTEMS

one 
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COMPOSITE SYSTEMS
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electron 
spin

same 
electron 
position



COMPOSITE SYSTEMS

bases combine
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shorthand
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COMPOSITE SYSTEMS: 
SUPERPOSITIONS

A                             B

(↵ |0i+ � |1i)⌦ (� |0i+ � |1i)
= ↵� |00i+ ↵� |01i+ �� |10i+ �� |11i

1

2
(|00i � |11i) =

no factorization 
Entangled

↵� = +1 ↵� = 0
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COMPOSITE SYSTEMS

S(⇢1) = ?

S(⇢2) = ?

S(⇢3) = ?

What is the von Neumann entropy 
of these three states?

simple :

superposition :

entangled :

⇢1 = |00i⌦ h00|

⇢2 =
1p
2
(|00i � |01i)⌦ 1p

2
(h00|� h01|)

⇢3 =
1p
2
(|00i � |11i)⌦ 1p

2
(h00|� h11|)



COMPOSITE SYSTEMS

vNE involves probing global measurements. 
What about local?
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COMPOSITE SYSTEMS

vNE involves probing global measurements. 
What about local?

|00i
1p
2
(|00i � |01i) 1p

2
(|00i � |11i)

0 00 0 00

???
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PARTIAL TRACE

“ignore one quantum subsystem”

{MA}

Given meas of A,

⇢AB ?�! ⇢A

MAB
m = MA

m ⌦ 1B

corresponding meas of joint:

We know this:

Pr(m) = tr
�
MA

m ⌦ 1B⇢AB
�

⇢A ⌘ trB(⇢
AB)
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PARTIAL TRACE
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TELEPORTATION

Alice has some qubit state

| i = ↵ |0i+ � |1i

she wishes to send to Bob. 
How much information must be transmitted?

What if they share an entangled pair? 
(and a codebook for how to use it)

Entanglement is a resource



ENTANGLEMENT MEASURES

Entanglement entropy 
Entanglement of formation 
Entanglement of distillation



ENTANGLEMENT: EXTENSION 
TO MIXED STATES

state EoF def 
convex roof 

difficult optimization problem


