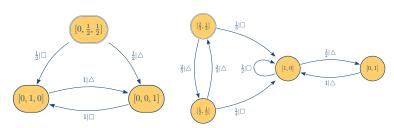
Complexity à la Mode: Spectral Methods for Complex Systems $Part 2H_2(p)|_{p=\frac{1}{2}}$

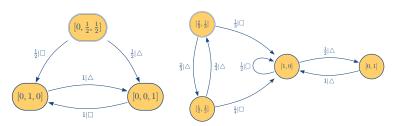
Paul M. Riechers

Complexity Sciences Center Department of Physics University of California, Davis

May 22^{nd} 2014



Implicitly, we already visualize modes.



Implicitly, we already visualize modes.

Spectral methods formalize and empower our intuition.

Sample of Exact Results Obtained in Closed-Form:

Sample of Exact Results Obtained in Closed-Form:

Directly from any HMM presentation of a process:

Dynamics

Sample of Exact Results Obtained in Closed-Form:

- Dynamics
- Correlation functions

Sample of Exact Results Obtained in Closed-Form:

Myopic Entropy Rates

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)

Sample of Exact Results Obtained in Closed-Form:

Myopic Entropy Rates

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- . . .

Sample of Exact Results Obtained in Closed-Form:

Directly from any HMM presentation of a process:

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- . . .

Directly from the Mixed-State Presentation (MSP) of any HMM:

Sample of Exact Results Obtained in Closed-Form:

Directly from any HMM presentation of a process:

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- . . .

Directly from the Mixed-State Presentation (MSP) of any HMM:

• Myopic entropy rates $h_{\mu}(L)$; asymptotic entropy rate h_{μ}

Some Motivation

Introduction

Sample of Exact Results Obtained in Closed-Form:

Directly from any HMM presentation of a process:

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- . . .

Directly from the Mixed-State Presentation (MSP) of any HMM:

- Myopic entropy rates $h_{\mu}(L)$; asymptotic entropy rate h_{μ}
- Past–Future Mutual Information (i.e., Excess Entropy **E**)

Sample of Exact Results Obtained in Closed-Form:

Directly from any HMM presentation of a process:

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- . . .

Directly from the Mixed-State Presentation (MSP) of any HMM:

- Myopic entropy rates $h_{\mu}(L)$; asymptotic entropy rate h_{μ}
- Past–Future Mutual Information (i.e., Excess Entropy **E**)
- Info shared btw. past and future, but not in the present (i.e., Elusive Information σ_{μ})
- . . .

Sample of Exact Results Obtained in Closed-Form:

Directly from any HMM presentation of a process:

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- . . .

Directly from the Mixed-State Presentation (MSP) of any HMM:

- Myopic entropy rates $h_{\mu}(L)$; asymptotic entropy rate h_{μ}
- Past–Future Mutual Information (i.e., Excess Entropy **E**)
- Info shared btw. past and future, but not in the present (i.e., Elusive Information σ_{μ})
- . . .

Directly from MSP of ϵ -machine:

Sample of Exact Results Obtained in Closed-Form:

Directly from any HMM presentation of a process:

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- ...

Directly from the Mixed-State Presentation (MSP) of any HMM:

- Myopic entropy rates $h_{\mu}(L)$; asymptotic entropy rate h_{μ}
- Past–Future Mutual Information (i.e., Excess Entropy E)
- Info shared btw. past and future, but not in the present (i.e., Elusive Information σ_{μ})
- . . .

Directly from MSP of ϵ -machine:

• Average causal-state uncertainty $\mathcal{H}(L)$

Sample of Exact Results Obtained in Closed-Form:

Directly from any HMM presentation of a process:

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- ...

Directly from the Mixed-State Presentation (MSP) of any HMM:

- Myopic entropy rates $h_{\mu}(L)$; asymptotic entropy rate h_{μ}
- Past–Future Mutual Information (i.e., Excess Entropy E)
- Info shared btw. past and future, but not in the present (i.e., Elusive Information σ_{μ})
- . . .

Directly from MSP of ϵ -machine:

- Average causal-state uncertainty $\mathcal{H}(L)$
- Synchronization Information S

We covered:

We covered:

• Functions of operators; overview of spectral decomposition

We covered:

- Functions of operators; overview of spectral decomposition
- Dynamics, Correlation Functions, and Power Spectra from any HMM presentation of a process

Previously: Power Spectrum of Even Process

Introduction

00000000

$$P_{c}(\omega) = \langle \pi | T^{(1)} | \mathbf{1} \rangle + 2 \sum_{\lambda \in \Lambda_{T}} \operatorname{Re} \frac{\langle \pi | T^{(1)} T_{\lambda} T^{(1)} | \mathbf{1} \rangle}{e^{i\omega} - \lambda}$$

Previously: Power Spectrum of Even Process

Introduction

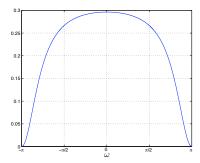
000000000

$$P_{c}(\omega) = \langle \pi | T^{(1)} | \mathbf{1} \rangle + 2 \sum_{\lambda \in \Lambda_{T}} \operatorname{Re} \frac{\langle \pi | T^{(1)} T_{\lambda} T^{(1)} | \mathbf{1} \rangle}{e^{i\omega} - \lambda}$$
$$= \frac{2}{3} + 2 \left(\frac{4}{9} \operatorname{Re} \frac{1}{e^{i\omega} - 1} - \frac{1}{18} \operatorname{Re} \frac{1}{e^{i\omega} + \frac{1}{2}} \right)$$

$$P_{c}(\omega) = \langle \pi | T^{(1)} | \mathbf{1} \rangle + 2 \sum_{\lambda \in \Lambda_{T}} \operatorname{Re} \frac{\langle \pi | T^{(1)} T_{\lambda} T^{(1)} | \mathbf{1} \rangle}{e^{i\omega} - \lambda}$$
$$= \frac{2}{3} + 2 \left(\frac{4}{9} \operatorname{Re} \frac{1}{e^{i\omega} - 1} - \frac{1}{18} \operatorname{Re} \frac{1}{e^{i\omega} + \frac{1}{2}} \right)$$
$$= \frac{1}{3} \left(1 - \frac{1}{5 + 4 \cos \omega} \right)$$

000000000

$$P_{c}(\omega) = \langle \pi | T^{(1)} | \mathbf{1} \rangle + 2 \sum_{\lambda \in \Lambda_{T}} \operatorname{Re} \frac{\langle \pi | T^{(1)} T_{\lambda} T^{(1)} | \mathbf{1} \rangle}{e^{i\omega} - \lambda}$$
$$= \frac{2}{3} + 2 \left(\frac{4}{9} \operatorname{Re} \frac{1}{e^{i\omega} - 1} - \frac{1}{18} \operatorname{Re} \frac{1}{e^{i\omega} + \frac{1}{2}} \right)$$
$$= \frac{1}{3} \left(1 - \frac{1}{5 + 4 \cos \omega} \right)$$



Example Power Spectra

Introduction

000000000

If $\mathcal{A} = \{0, 1\}$ and T is diagonalizable, then the power spectrum is simply:

Myopic Entropy Rates

$$P_{c}(\omega) = \langle \pi | T^{(1)} | \mathbf{1} \rangle + 2 \sum_{\lambda \in \Lambda_{T}} \operatorname{Re} \frac{\langle \pi | T^{(1)} T_{\lambda} T^{(1)} | \mathbf{1} \rangle}{e^{i\omega} - \lambda}.$$

000000000

If $\mathcal{A} = \{0, 1\}$ and T is diagonalizable, then the power spectrum is simply:

Myopic Entropy Rates

$$P_{c}(\omega) = \langle \pi | T^{(1)} | \mathbf{1} \rangle + 2 \sum_{\lambda \in \Lambda_{T}} \operatorname{Re} \frac{\langle \pi | T^{(1)} T_{\lambda} T^{(1)} | \mathbf{1} \rangle}{e^{i\omega} - \lambda}.$$

Consequences:

If $A = \{0, 1\}$ and T is diagonalizable, then the power spectrum is simply:

Myopic Entropy Rates

$$P_{c}(\omega) = \langle \pi | T^{(1)} | \mathbf{1} \rangle + 2 \sum_{\lambda \in \Lambda_{T}} \operatorname{Re} \frac{\langle \pi | T^{(1)} T_{\lambda} T^{(1)} | \mathbf{1} \rangle}{e^{i\omega} - \lambda}.$$

Consequences:

• # of states of any presentation puts upper bound on # of peaks in power spectrum

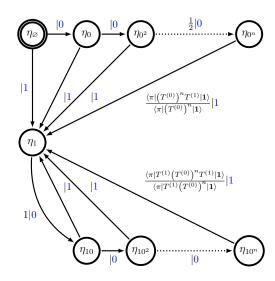
If $\mathcal{A} = \{0, 1\}$ and T is diagonalizable, then the power spectrum is simply:

$$P_{c}(\omega) = \langle \pi | T^{(1)} | \mathbf{1} \rangle + 2 \sum_{\lambda \in \Lambda_{T}} \operatorname{Re} \frac{\langle \pi | T^{(1)} T_{\lambda} T^{(1)} | \mathbf{1} \rangle}{e^{i\omega} - \lambda}.$$

Consequences:

- # of states of any presentation puts upper bound on # of peaks in power spectrum
- # of peaks in power spectrum gives lower bound on # of states of any presentation

Power Spectrum of SNS



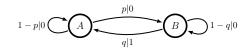
Example Power Spectra

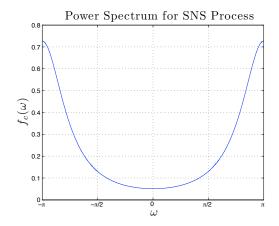
Introduction 00000000

Power Spectrum of SNS

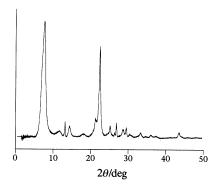
$$1 - p|0 \qquad A \qquad \qquad B \qquad 1 - q|$$

Power Spectrum of SNS





Diffraction Pattern (Power Spectrum of Structure Factors) of Chaotic Crystal



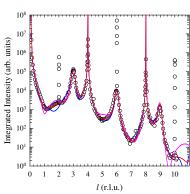
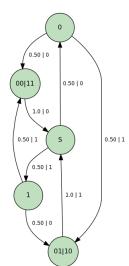


Figure of XRD from typical zeolite beta sample from Treacy et al.

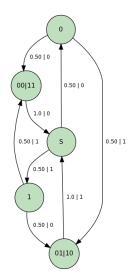
Figure of XRD of multi-layer grapheme on SiC from Hass et al.

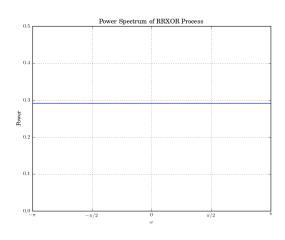
RRXOR Process

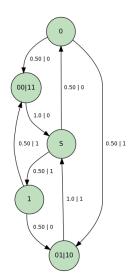


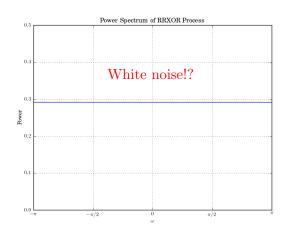
Further Considerations

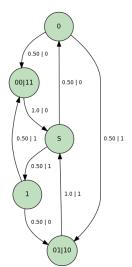
RRXOR Process

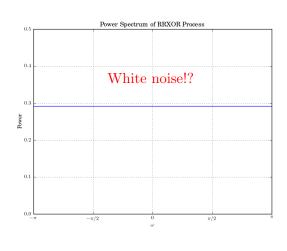












Regularities unseen; randomness observed.

Regularities unseen; randomness observed.

 \rightarrow A need for more sophisticated probes of structure: measures of information transduction.

Regularities unseen; randomness observed.

- \rightarrow A need for more sophisticated probes of structure: measures of information transduction.
 - Especially as processes become more complex, the interesting behavior gets processed primarily within very high-order correlations.

Definitions

$$\Lambda_A \equiv \{\lambda \in \mathbb{C} : \det(\lambda I - A) = 0\}$$

$$\Lambda_A \equiv \{ \lambda \in \mathbb{C} : \det(\lambda I - A) = 0 \}$$

• The projection operator associated with the eigenvalue λ is:

$$A_{\lambda} = \operatorname{Res}\left[(zI - A)^{-1}, z \to \lambda\right]$$

$$\rightarrow A_{\lambda} = \prod_{\zeta \in \Lambda_A \setminus \{\lambda\}} \frac{A - \zeta I}{\lambda - \zeta}$$
 if A is diagonalizable.

$$\Lambda_A \equiv \{ \lambda \in \mathbb{C} : \det(\lambda I - A) = 0 \}$$

• The projection operator associated with the eigenvalue λ is:

$$A_{\lambda} = \operatorname{Res}\left[(zI - A)^{-1}, z \to \lambda\right]$$

$$\rightarrow A_{\lambda} = \prod_{\zeta \in \Lambda_A \setminus \{\lambda\}} \frac{A - \zeta I}{\lambda - \zeta}$$
 if A is diagonalizable.

• The projection operators are mutually orthogonal:

$$A_{\zeta}A_{\lambda} = \delta_{\zeta,\lambda} A_{\lambda}$$

$$\Lambda_A \equiv \{ \lambda \in \mathbb{C} : \det(\lambda I - A) = 0 \}$$

• The projection operator associated with the eigenvalue λ is:

$$A_{\lambda} = \operatorname{Res}\left[(zI - A)^{-1}, z \to \lambda\right]$$

$$\rightarrow A_{\lambda} = \prod_{\zeta \in \Lambda_A \setminus \{\lambda\}} \frac{A - \zeta I}{\lambda - \zeta}$$
 if A is diagonalizable.

• The projection operators are mutually orthogonal:

$$A_{\zeta}A_{\lambda} = \delta_{\zeta,\lambda} A_{\lambda}$$

• For a stochastic matrix (i.e., all rows sum to unity), all eigenvalues lie on or within the unit circle; the eigenvalue of unity is guaranteed with $a_1 = g_1 = 1$; single attractor $\rightarrow T_1 = |\mathbf{1}\rangle \langle \pi|$.

Reasons for Using Projection Operators

$$\gamma[\tau] = \sum_{\lambda \in \Lambda_T} \frac{1}{\lambda} \langle \pi | \left(\sum_{x \in \mathcal{A}} \overline{x} T^{(x)} \right) T_{\lambda} \left(\sum_{x' \in \mathcal{A}} x' T^{(x')} \right) | \mathbf{1} \rangle \lambda^{\tau}$$

for $\tau > 0$ and diagonalizable T.

$$\gamma[\tau] = \sum_{\lambda \in \Lambda_T} \frac{1}{\lambda} \langle \pi | \left(\sum_{x \in \mathcal{A}} \overline{x} T^{(x)} \right) T_{\lambda} \left(\sum_{x' \in \mathcal{A}} x' T^{(x')} \right) | \mathbf{1} \rangle \lambda^{\tau}$$

for $\tau > 0$ and diagonalizable T.

• Isolating spectral contributions allows for unusual ease in extracting poorly behaved modes. E.g.:

$$\mathbf{E} = \sum_{\lambda \in \Lambda_W \setminus \{1\}} (\dots)$$

where (...) will soon be revealed.

$$\gamma[\tau] = \sum_{\lambda \in \Lambda_T} \frac{1}{\lambda} \langle \pi | \left(\sum_{x \in \mathcal{A}} \overline{x} T^{(x)} \right) T_{\lambda} \left(\sum_{x' \in \mathcal{A}} x' T^{(x')} \right) | \mathbf{1} \rangle \lambda^{\tau}$$

for $\tau > 0$ and diagonalizable T.

• Isolating spectral contributions allows for unusual ease in extracting poorly behaved modes. E.g.:

$$\mathbf{E} = \sum_{\lambda \in \Lambda_W \setminus \{1\}} (\dots)$$

where (...) will soon be revealed.

• Degeneracy of eigenvalues unproblematic so long as $a_{\lambda} = g_{\lambda}$ (compare to fuss over 'degenerate perturbation theory' although H is always diagonalizable!)

$$\gamma[\tau] = \sum_{\lambda \in \Lambda_T} \frac{1}{\lambda} \langle \pi | \left(\sum_{x \in \mathcal{A}} \overline{x} T^{(x)} \right) T_{\lambda} \left(\sum_{x' \in \mathcal{A}} x' T^{(x')} \right) | \mathbf{1} \rangle \lambda^{\tau}$$

for $\tau > 0$ and diagonalizable T.

• Isolating spectral contributions allows for unusual ease in extracting poorly behaved modes. E.g.:

$$\mathbf{E} = \sum_{\lambda \in \Lambda_W \setminus \{1\}} (\dots)$$

where (...) will soon be revealed.

- Degeneracy of eigenvalues unproblematic so long as $a_{\lambda} = g_{\lambda}$ (compare to fuss over 'degenerate perturbation theory' although H is always diagonalizable!)
- They play nicely with non-diagonalizability and (optimistically) also ∞-state extensions.

$$h_{\mu}(L) \equiv H(L) - H(L-1)$$

$$h_{\mu}(L) \equiv H(L) - H(L-1)$$

= $H[X_{0:L}| \mu_0 = \pi] - H[X_{0:L-1}| \mu_0 = \pi]$

$$h_{\mu}(L) \equiv H(L) - H(L-1)$$

$$= H[X_{0:L}| \mu_0 = \pi] - H[X_{0:L-1}| \mu_0 = \pi]$$

$$= H[X_{L-1}, X_{0:L-1}| \mu_0 = \pi] - H[X_{0:L-1}| \mu_0 = \pi]$$

$$\begin{split} h_{\mu}(L) &\equiv H(L) - H(L-1) \\ &= H[X_{0:L}|\,\mu_0 = \pi] - H[X_{0:L-1}|\,\mu_0 = \pi] \\ &= H[X_{L-1},\,X_{0:L-1}|\,\mu_0 = \pi] - H[X_{0:L-1}|\,\mu_0 = \pi] \\ &= H[X_{L-1}|\,X_{0:L-1},\,\mu_0 = \pi] \end{split}$$

$$\begin{split} h_{\mu}(L) &\equiv H(L) - H(L-1) \\ &= H[X_{0:L}|\,\mu_0 = \pi] - H[X_{0:L-1}|\,\mu_0 = \pi] \\ &= H[X_{L-1},\,X_{0:L-1}|\,\mu_0 = \pi] - H[X_{0:L-1}|\,\mu_0 = \pi] \\ &= H[X_{L-1}|\,X_{0:L-1},\,\mu_0 = \pi] \\ &= H[X_{L-1}|\,\mathcal{R}_{L-1},\,\mathcal{R}_0 = \pi] \end{split}$$

$$\begin{split} h_{\mu}(L) &\equiv H(L) - H(L-1) \\ &= H[X_{0:L}|\,\mu_0 = \pi] - H[X_{0:L-1}|\,\mu_0 = \pi] \\ &= H[X_{L-1},\,X_{0:L-1}|\,\mu_0 = \pi] - H[X_{0:L-1}|\,\mu_0 = \pi] \\ &= H[X_{L-1}|\,X_{0:L-1},\,\mu_0 = \pi] \\ &= H[X_{L-1}|\,\mathcal{R}_{L-1},\,\mathcal{R}_0 = \pi] \\ &= H\big[X_{L-1}|\,\big(\mathcal{R}_{L-1}|\mathcal{R}_0 = \pi\big)\big] \,. \end{split}$$

Introduction

The states $\eta \in \mathcal{R}$ of the Mixed State Presentation (MSP) are distributions over the states \mathcal{S} of another presentation. Starting from the MSP's start state—the stationary distribution π —the MSP gives the observation-induced evolution of probability density over distributions-over- \mathcal{S} .

The initial distribution over MSP—assuming no prior observations of the known process—is denoted δ_{π} with $\langle \delta_{\pi} | = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \end{bmatrix}$.

The transition matrix W of the MSP is a stochastic matrix with $W_1 = |\mathbf{1}\rangle \langle \pi_W|$.

$$h_{\mu}(L) = H\left[X_{L-1} | \left(\mathcal{R}_{L-1} | \mathcal{R}_0 = \pi\right)\right]$$

$$h_{\mu}(L) = H\left[X_{L-1}|\left(\mathcal{R}_{L-1}|\mathcal{R}_{0} = \pi\right)\right]$$
$$= \sum_{\eta \in \mathcal{R}} \Pr(\mathcal{R}_{L-1} = \eta | \mathcal{R}_{0} = \pi) H[X_{L-1}| \mathcal{R}_{L-1} = \eta]$$

$$h_{\mu}(L) = H\left[X_{L-1} | \left(\mathcal{R}_{L-1} | \mathcal{R}_{0} = \pi\right)\right]$$

$$= \sum_{\eta \in \mathcal{R}} \Pr(\mathcal{R}_{L-1} = \eta | \mathcal{R}_{0} = \pi) H[X_{L-1} | \mathcal{R}_{L-1} = \eta]$$

$$= \sum_{\eta \in \mathcal{R}} \left\langle \delta_{\pi} | W^{L-1} | \eta \right\rangle \times - \sum_{x \in \mathcal{A}} \left\langle \delta_{\eta} | W^{(x)} | \mathbf{1} \right\rangle \log_{2}\left(\left\langle \delta_{\eta} | W^{(x)} | \mathbf{1} \right\rangle\right)$$

$$h_{\mu}(L) = H\left[X_{L-1} | \left(\mathcal{R}_{L-1} | \mathcal{R}_{0} = \pi\right)\right]$$

$$= \sum_{\eta \in \mathcal{R}} \Pr(\mathcal{R}_{L-1} = \eta | \mathcal{R}_{0} = \pi) H[X_{L-1} | \mathcal{R}_{L-1} = \eta]$$

$$= \sum_{\eta \in \mathcal{R}} \langle \delta_{\pi} | W^{L-1} | \eta \rangle \times - \sum_{x \in \mathcal{A}} \langle \delta_{\eta} | W^{(x)} | \mathbf{1} \rangle \log_{2}\left(\langle \delta_{\eta} | W^{(x)} | \mathbf{1} \rangle\right)$$

$$= \langle \delta_{\pi} | W^{L-1} \left[- \sum_{\eta \in \mathcal{R}} |\delta_{\eta}\rangle \sum_{x \in \mathcal{A}} \langle \delta_{\eta} | W^{(x)} | \mathbf{1} \rangle \log_{2}\left(\langle \delta_{\eta} | W^{(x)} | \mathbf{1} \rangle\right) \right]$$

How to Make Things Look Like Linear Algebra

The length-L entropy rate

$$h_{\mu}(L) = H\left[X_{L-1}|\left(\mathcal{R}_{L-1}|\mathcal{R}_{0} = \pi\right)\right]$$

$$= \sum_{\eta \in \mathcal{R}} \Pr(\mathcal{R}_{L-1} = \eta | \mathcal{R}_{0} = \pi) H[X_{L-1}| \mathcal{R}_{L-1} = \eta]$$

$$= \sum_{\eta \in \mathcal{R}} \langle \delta_{\pi} | W^{L-1} | \eta \rangle \times - \sum_{x \in \mathcal{A}} \langle \delta_{\eta} | W^{(x)} | \mathbf{1} \rangle \log_{2}\left(\langle \delta_{\eta} | W^{(x)} | \mathbf{1} \rangle\right)$$

$$= \langle \delta_{\pi} | W^{L-1} \left[- \sum_{\eta \in \mathcal{R}} |\delta_{\eta} \rangle \sum_{x \in \mathcal{A}} \langle \delta_{\eta} | W^{(x)} | \mathbf{1} \rangle \log_{2}\left(\langle \delta_{\eta} | W^{(x)} | \mathbf{1} \rangle\right) \right]$$

$$= \langle \delta_{\pi} | W^{L-1} | H(W^{\mathcal{A}}) \rangle,$$

where

$$|H(W^{\mathcal{A}})\rangle \equiv -\sum_{n\in\mathcal{R}} |\delta_{\eta}\rangle \sum_{x\in\mathcal{A}} \langle \delta_{\eta}|W^{(x)}|\mathbf{1}\rangle \log_2(\langle \delta_{\eta}|W^{(x)}|\mathbf{1}\rangle)$$

If W is diagonalizable, then

$$\langle \delta_{\pi} | W^{L-1} = \langle \delta_{\pi} | \sum_{\lambda \in \Lambda_W} \lambda^{L-1} W_{\lambda}$$
$$= \sum_{\lambda \in \Lambda_W} \lambda^{L-1} \langle \delta_{\pi} | W_{\lambda}$$

where $\{W_{\lambda}\}$ can by obtained via

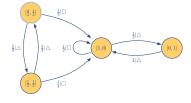
$$W_{\lambda} = \prod_{\substack{\zeta \in \Lambda_W \\ \zeta \neq \lambda}} \frac{W - \zeta I}{\lambda - \zeta}.$$

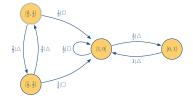
Hence, for diagonalizable W, the length-L entropy rate can be rewritten as

$$h_{\mu}(L) = \langle \delta_{\pi} | W^{L-1} | H(W^{\mathcal{A}}) \rangle$$

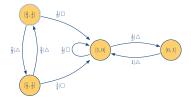
=
$$\sum_{\lambda \in \Lambda_{W}} \lambda^{L-1} \langle \delta_{\pi} | W_{\lambda} | H(W^{\mathcal{A}}) \rangle,$$

which is a closed-form expression for $h_{\mu}(L)$ with scalar exponentiation as the only L-dependence.



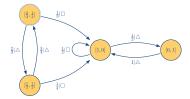


$$W = \begin{bmatrix} 0 & 2/3 & 1/3 & 0 \\ 3/4 & 0 & 1/4 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$



$$\mathcal{M}_{\text{msp}} \det(\lambda I - W) = (\lambda - 1)(\lambda + \frac{1}{2})(\lambda^2 - \frac{1}{2}) = 0$$

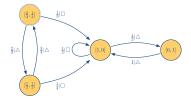
$$W = \begin{bmatrix} 0 & 2/3 & 1/3 & 0 \\ 3/4 & 0 & 1/4 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$



$$\mathcal{M}_{\text{msp}} \det(\lambda I - W) = (\lambda - 1)(\lambda + \frac{1}{2})(\lambda^2 - \frac{1}{2}) = 0$$

$$W = \begin{bmatrix} 0 & 2/3 & 1/3 & 0 \\ 3/4 & 0 & 1/4 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

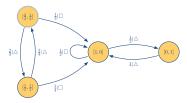
$$\Lambda_W = \left\{ 1, \, \frac{\sqrt{2}}{2}, \, -\frac{\sqrt{2}}{2}, \, -\frac{1}{2} \right\}$$



$$\mathcal{M}_{\text{msp}} \det(\lambda I - W) = (\lambda - 1)(\lambda + \frac{1}{2})(\lambda^2 - \frac{1}{2}) = 0$$

$$W = \begin{bmatrix} 0 & 2/3 & 1/3 & 0 \\ 3/4 & 0 & 1/4 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

$$\begin{split} \Lambda_W &= \left\{1, \ \frac{\sqrt{2}}{2}, \ -\frac{\sqrt{2}}{2}, \ -\frac{1}{2} \right\} \\ &\approx \left\{1, \ 0.707, \ -0.707, \ -0.5 \right\} \end{split}$$



$$\mathcal{M}_{msp} \det(\lambda I - W) = (\lambda - 1)(\lambda + \frac{1}{2})(\lambda^2 - \frac{1}{2}) = 0$$

$$\langle \delta_{\pi} | = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}.$$

$$W = \begin{bmatrix} 0 & 2/3 & 1/3 & 0 \\ 3/4 & 0 & 1/4 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

$$\Lambda_W = \left\{ 1, \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, -\frac{1}{2} \right\}
\approx \left\{ 1, 0.707, -0.707, -0.5 \right\}$$

λ	$\langle \delta_{\pi} W_{\lambda}$				
1	[0	0	$\frac{2}{3}$	$\frac{1}{3}$	Flor (2) 2
$\sqrt{2}/2$	$\left[\frac{1}{2}\right]$	$\frac{\sqrt{2}}{3}$	$\frac{-2-\sqrt{2}}{6}$	$\frac{-\sqrt{2}-1}{6}\big]$	$ H(W^{\mathcal{A}})\rangle = \begin{bmatrix} \log_2(3) - \frac{2}{4} \\ 2 - \frac{3}{4} \log_2(3) \\ 1 \\ 0 \end{bmatrix}$
$-\sqrt{2}/2$	$\left[\frac{1}{2}\right]$	$\frac{-\sqrt{2}}{3}$	$\frac{-2+\sqrt{2}}{6}$	$\frac{\sqrt{2}-1}{6}$	
-1/2	[0	0	0	0]	

$$h_{\mu}(L) = \sum_{\lambda \in \Lambda_{W}} \lambda^{L-1} \left\langle \delta_{\pi} | W_{\lambda} | H(W^{\mathcal{A}}) \right\rangle \rangle$$

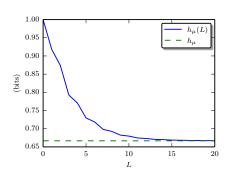
$$\begin{split} h_{\mu}(L) &= \sum_{\lambda \in \Lambda_W} \lambda^{L-1} \left\langle \delta_{\pi} | W_{\lambda} | H(W^{\mathcal{A}}) \right\rangle \right\rangle \\ &= \frac{2}{3} + \left(\frac{\sqrt{2}}{2}\right)^{L-1} \left(\frac{1}{2} \log_2(3) - \frac{\sqrt{2}}{4} \log_2(3) - \frac{2}{3} + \frac{\sqrt{2}}{2}\right) \\ &+ \left(-\frac{\sqrt{2}}{2}\right)^{L-1} \left(\frac{1}{2} \log_2(3) + \frac{\sqrt{2}}{4} \log_2(3) - \frac{2}{3} - \frac{\sqrt{2}}{2}\right) \end{split}$$

 $h_{\mu}(L) = \sum_{\lambda} \lambda^{L-1} \langle \delta_{\pi} | W_{\lambda} | H(W^{A}) \rangle \rangle$

$$= \frac{2}{3} + \left(\frac{\sqrt{2}}{2}\right)^{L-1} \left(\frac{1}{2}\log_2(3) - \frac{\sqrt{2}}{4}\log_2(3) - \frac{2}{3} + \frac{\sqrt{2}}{2}\right) + \left(-\frac{\sqrt{2}}{2}\right)^{L-1} \left(\frac{1}{2}\log_2(3) + \frac{\sqrt{2}}{4}\log_2(3) - \frac{2}{3} - \frac{\sqrt{2}}{2}\right)$$

$$= \begin{cases} \frac{2}{3} + \left(\frac{\sqrt{2}}{2}\right)^{L-1} \left(-\frac{\sqrt{2}}{2}\log_2(3) + \sqrt{2}\right) & \text{for even } L \\ \frac{2}{3} + \left(\frac{\sqrt{2}}{2}\right)^{L-1} \left(\log_2(3) - \frac{4}{3}\right) & \text{for odd } L \end{cases}$$

$$h_{\mu}(L) = \begin{cases} \frac{2}{3} + \left(\frac{\sqrt{2}}{2}\right)^{L-1} \left(-\frac{\sqrt{2}}{2}\log_2(3) + \sqrt{2}\right) & \text{for even } L\\ \frac{2}{3} + \left(\frac{\sqrt{2}}{2}\right)^{L-1} \left(\log_2(3) - \frac{4}{3}\right) & \text{for odd } L \end{cases}$$



$$\mathbf{E} \equiv \sum_{L=1}^{\infty} \left[h_{\mu}(L) - h_{\mu} \right]$$

$$\mathbf{E} \equiv \sum_{L=1}^{\infty} \left[h_{\mu}(L) - h_{\mu} \right]$$
$$= \sum_{L=1}^{\infty} \sum_{\substack{\lambda \in \Lambda_W \\ |\lambda| < 1}} \lambda^{L-1} \left\langle \delta_{\pi} | W_{\lambda} | H(W^{\mathcal{A}}) \right\rangle$$

$$\mathbf{E} \equiv \sum_{L=1}^{\infty} \left[h_{\mu}(L) - h_{\mu} \right]$$

$$= \sum_{L=1}^{\infty} \sum_{\substack{\lambda \in \Lambda_W \\ |\lambda| < 1}} \lambda^{L-1} \left\langle \delta_{\pi} | W_{\lambda} | H(W^{\mathcal{A}}) \right\rangle$$

$$= \sum_{\substack{\lambda \in \Lambda_W \\ |\lambda| < 1}} \left\langle \delta_{\pi} | W_{\lambda} | H(W^{\mathcal{A}}) \right\rangle \sum_{L=1}^{\infty} \lambda^{L-1}$$

$$= \sum_{L=0}^{\infty} \lambda^{L} = \frac{1}{1-\lambda}$$

$$\mathbf{E} \equiv \sum_{L=1}^{\infty} [h_{\mu}(L) - h_{\mu}]$$

$$= \sum_{L=1}^{\infty} \sum_{\substack{\lambda \in \Lambda_{W} \\ |\lambda| < 1}} \lambda^{L-1} \langle \delta_{\pi} | W_{\lambda} | H(W^{A}) \rangle$$

$$= \sum_{\substack{\lambda \in \Lambda_{W} \\ |\lambda| < 1}} \langle \delta_{\pi} | W_{\lambda} | H(W^{A}) \rangle \sum_{L=1}^{\infty} \lambda^{L-1}$$

$$= \sum_{\substack{L \in \Lambda_{W} \\ |\lambda| < 1}} \frac{1}{1 - \lambda} \langle \delta_{\pi} | W_{\lambda} | H(W^{A}) \rangle$$

Alternatively, for any non-diagonalizable W,

$$\begin{split} \mathbf{E} &\equiv \sum_{L=1}^{\infty} \left[h_{\mu}(L) - h_{\mu} \right] \\ &= \sum_{L=1}^{\infty} \left[\left\langle \delta_{\pi} \right| \boldsymbol{W}^{L-1} \left| \boldsymbol{H}(\boldsymbol{W}^{A}) \right\rangle - \left\langle \delta_{\pi} \right| \boldsymbol{W}_{1} \left| \boldsymbol{H}(\boldsymbol{W}^{A}) \right\rangle \right] \\ &= \sum_{L=0}^{\infty} \left[\left\langle \delta_{\pi} \right| \boldsymbol{W}^{L} \left| \boldsymbol{H}(\boldsymbol{W}^{A}) \right\rangle - \left\langle \delta_{\pi} \right| \boldsymbol{W}_{1} \left| \boldsymbol{H}(\boldsymbol{W}^{A}) \right\rangle \right] \\ &= \sum_{L=0}^{\infty} \left\langle \delta_{\pi} \right| \left[\left(\underbrace{\boldsymbol{W} - \boldsymbol{W}_{1}} \right)^{L} - \delta_{L,0} \boldsymbol{W}_{1} \right] \left| \boldsymbol{H}(\boldsymbol{W}^{A}) \right\rangle \\ &= - \underbrace{\left\langle \delta_{\pi} \right| \boldsymbol{W}_{1} \left| \boldsymbol{H}(\boldsymbol{W}^{A}) \right\rangle}_{= \left\langle \boldsymbol{W}_{1} \right| \boldsymbol{H}(\boldsymbol{W}^{A}) \right\rangle} + \sum_{L=0}^{\infty} \underbrace{\left\langle \delta_{\pi} \right| \boldsymbol{Q}^{L}}_{= \left\langle \delta_{\pi} \right| \boldsymbol{Q}^{L}} \left| \boldsymbol{H}(\boldsymbol{W}^{A}) \right\rangle \\ &= \left\langle \delta_{\pi} \right| \left(\sum_{L=0}^{\infty} \boldsymbol{Q}^{L} \right) \left| \boldsymbol{H}(\boldsymbol{W}^{A}) \right\rangle - h_{\mu} \\ &= \left\langle \delta_{\pi} \right| \left(\boldsymbol{I} - \boldsymbol{Q} \right)^{-1} \left| \boldsymbol{H}(\boldsymbol{W}^{A}) \right\rangle - h_{\mu} \\ &= \left\langle \delta_{\pi} \right| \left(\boldsymbol{I} - \boldsymbol{Q} \right)^{-1} \left| \boldsymbol{H}(\boldsymbol{W}^{A}) \right\rangle - h_{\mu} \end{split}$$

1 10 10 11 11 11 11

Similar statements result for all of the familiar complexity measures; **T**, **S**, and so on.

Interestingly, they all appear more alike than ever, yielding new insight for how they are all related. E.g.:

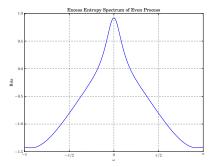
$$\mathbf{E} = \langle \delta_{\pi} | (I - Q)^{-1} | H(W^{\mathcal{A}}) \rangle - h_{\mu},$$

$$\mathbf{S} = \langle \delta_{\pi} | (I - Q)^{-1} | H[\eta] \rangle - \mathcal{H},$$

and

$$\mathbf{T} = \langle \delta_{\pi} | (I - Q)^{-2} | H(W^{\mathcal{A}}) \rangle - h_{\mu}.$$

$$\mathbf{E}(\omega) \equiv \operatorname{Re} \langle \delta_{\pi} | (e^{i\omega} I - Q)^{-1} | H(W^{\mathcal{A}}) \rangle - h_{\mu}$$



Thank you!

Example: Complexity Measures for a Prototypic Sofic System: The Even Process

$$\mathcal{M} = (\mathcal{A} = \{\Box, \triangle\}, \mathcal{S} = \{A, B\}, T^{A}).$$

For $\square = 0$ and $\triangle = 1$, we find the continuous part of the power spectrum to be:

$$\rho_{\varepsilon}(\omega) = \frac{1}{3} \left(1 - \frac{1}{5 + 4\cos\omega}\right).$$

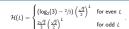
 $\mathcal{M}_{MSP} = (A = \{\Box, \triangle\}, \mathcal{R}, W^A), \text{ with } \mathcal{R} = \{(\frac{2}{3}, \frac{1}{3}), (\frac{1}{2}, \frac{1}{2}), (1, 0), (0, 1)\}.$

$$W = \sum_{x \in \mathcal{A}} W^{(x)} = \begin{bmatrix} 0 & 2/3 & 1/3 & 0 \\ 3/4 & 0 & 1/4 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 Solving $\det(\lambda I - W) = 0$ gives W 's eigenvalues:

ving
$$det(\lambda I - W) = 0$$
 gives W 's eigenvalue
$$\Lambda_W = \left\{1, \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, -\frac{1}{2}\right\}.$$

$$(3 - \{2, 2\}, 1, 2, W),$$
 with $(\frac{1}{5}), (\frac{1}{2}, \frac{1}{2}), (1, 0), (0, 1)\}.$

$$T = 2 \log_2(3)$$
 bits-symbols,
 $S = 2 \log_2(3)$ bits.



$$h_{\mu}(L) = \begin{cases} \frac{2}{3} + \left(\frac{\sqrt{2}}{2}\right)^{L-1} \left(-\frac{\sqrt{2}}{2}\log_2(3) + \sqrt{2}\right) & \text{for even } L \\ \frac{2}{3} + \left(\frac{\sqrt{2}}{2}\right)^{L-1} \left(\log_2(3) - \frac{4}{3}\right) & \text{for odd } L \end{cases}.$$

In short:

$$h_{\mu}(L) = H(L) - H(L - 1)$$

$$= H[X_{L-1}|X_{0:L-1}]$$

$$= H[X_{L-1}|(\mathcal{R}_{L-1}|\mathcal{R}_0 = \pi)]$$

$$= \langle \delta_{\pi}|W^{L-1}|H(W^{\mathcal{A}})\rangle,$$

where

$$|H(W^{\mathcal{A}})\rangle = -\sum_{\eta \in \mathcal{R}} |\delta_{\eta}\rangle \sum_{x \in \mathcal{A}} \langle \delta_{\eta} | W^{(x)} | \mathbf{1} \rangle \log_2 \langle \delta_{\eta} | W^{(x)} | \mathbf{1} \rangle.$$

$$h_{\mu}(L) = \langle \delta_{\pi} | W_1 | H(W^{\mathcal{A}}) \rangle + \sum_{\substack{\lambda \in \Lambda_W \\ |\lambda| < 1}} \lambda^{L-1} \langle \delta_{\pi} | W_{\lambda} | H(W^{\mathcal{A}}) \rangle$$