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Visualizing Modes

Implicitly, we already visualize modes.

Spectral methods formalize and empower our intuition. J
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Some Motivation

Sample of Exact Results Obtained in Closed-Form:

Directly from any HMM presentation of a process:
@ Dynamics
o Correlation functions
e Power spectra (including diffraction spectra of disordered
crystals)
o Inter-Spike-Interval histograms and return maps
° ...
Directly from the Mixed-State Presentation (MSP) of any HMM:
@ Myopic entropy rates hu(L); asymptotic entropy rate h,
o Past—Future Mutual Information (i.e., Excess Entropy E)
e Info shared btw. past and future, but not in the present (i.e.,
Elusive Information o)
° ...
Directly from MSP of e-machine:
e Average causal-state uncertainty (L)
e Synchronization Information S
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Some Motivation

HMMs as Mathematical Objects

(Autonomous) Process specified by A, T, and
o T4 together with the identity I form a semigroup

e The spectral properties of T, T*, and functions of T4 (e.g.,
MSP) describe the modes of probability density and
information flows

Complexity Sciences Center



Introduction
ooe

Some Motivation

Any HMM will have:
e some set of states S,
@ an alphabet A of observables,
e a set of |S|-by-|S| labeled transition matrices
TA={T@ . Tl(g;) = Pr(S; = 09|Si—1 = 0*) } e constituting
the row-stochastic state-to-state transition matrix
T= ZxGA T(ﬁ) :
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Some Motivation

Any HMM will have:
e some set of states S,
@ an alphabet A of observables,
e a set of |S|-by-|S| labeled transition matrices

TA = {170 . Tl(g;) = Pr(S; = 07|81 = 0%) }ze4 constituting
the row-stochastic state-to-state transition matrix
T=3,.T®.

Note:

@ bra—ket notation:
o |1) is the column vector of all ones
e 7 is the stationary distribution over S;
when cast as a row-vector: (7| = (7| T

e length-n ‘word’ w = xgz1... 241 € A"
o Probability of observing w given initial distribution p over
S is: Pry(w) = Pr(Xom = w|So ~ p) = (u| T 1) =
(] T@o) (@)  pln-1) 11).
e Stationary probability of w is: Pr(w) = (x| T("*) |1).
o Xj.y is left-inclusive and right-exclusive. Complesty Sciences Cente
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Notation and Methods via Ion Channel Dynamics

Recall that H-H model is acausal: Igaf o m3h.
Consequences?!
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Notation and Methods via Ion Channel Dynamics

A={0=‘0OFF, 1=*‘0ON’}

1 - 3a, At 3a,, At 0 0 0
Bt 1= (20 + Bm + k1) AL 20, At 0 k1At
7O (v, At) = 0 2B, At 1 — (ty + 2B + k2) At 0 ka At
0 0 38m At 0 ks At
0 0 ahAt 0 1-— ahAt
0 0 0 0 0
0 0 0 0 0
T (v, At) = 0 0 0 amAt 0
0 0 0 1—(36m +k3)At 0
0 0 0 0 0

where the oy, Bm, and ay are the voltage-dependent variables as in the Hodgkin and Huxley model.
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Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na™ channel

The state-to-state transition matrix is:
T (v, At) = TO (v, At) + TW (v, At)

= I+ (ADG()

where [ is the identity matrix and

—3am, 3am, 0 0 0
ﬂm _(2am + 6m + kl) 205m 0 kl
Gv) = 0 2Bm —(m + 28m + k2) m ko
0 0 3Bm —(3Bm +k3) ks
0 0 Qp, 0 —Qp
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Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na™ channel

In applying a voltage step from —100mV to 10mV, the average
current flowing through a channel is:

(I(t = nAt))

= E [IO Pr(w) Pr(Xp = 1|X0:n, = w) + 0Pr(w) Pr(Xy = 0|Xg.p, = w)]
Cana W w W w
w
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Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na™ channel

In applying a voltage step from —100mV to 10mV, the average
current flowing through a channel is:

(I(t = nAt))
= > [Io Pr(w) Pr(Xn = 1| Xoin = w) + 0Pr(w) Pr(Xp = 0|Xoin = w)]
weAm—1 3 H H ¢
=l > I;T(Xo:rurl = wl)
weAn—1
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Causally structured model of voltage-gated Na™ channel

In applying a voltage step from —100mV to 10mV, the average
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Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na™ channel

In applying a voltage step from —100mV to 10mV, the average
current flowing through a channel is:

(I(t = nAt))
= > [Io Pr(w) Pr(Xn = 1| Xoin = w) + 0Pr(w) Pr(Xp = 0|Xoin = w)]
weAm—1 3 H H ¢
=l > I;T(Xo:rurl = wl)
weAn—1

=10 Y (uT™7® )
weAn—1

=1Io (u\( > T““)) (Y

weAn—1

n—1

= Io (ul [H (7@ +T“’)] M 1)

=1
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Causally structured model of voltage-gated Na™ channel

In applying a voltage step from —100mV to 10mV, the average
current flowing through a channel is:

(I(t = nAt))
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Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na™ channel

In applying a voltage step from —100mV to 10mV, the average
current flowing through a channel is:

(I(t = nAt))
= > [Io Pr(w) Pr(Xn = 1| Xoin = w) + 0Pr(w) Pr(Xp = 0|Xoin = w)]
weAm—1 3 H H ¢
=l > I;T(Xo:rurl = wl)
weAn—1

=10 Y (uT™7® )
weAn—1

=1Io (u\( > T““)) (Y

weAn—1

n—1

= Io (ul [H (7@ +T“’)] M 1)

=1
n—1

=Ioul | [T )T 0
=1

=TIo (p| T M 1y
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Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na™ channel

So,
(Ut =nAb) =T (u T TO 1),
and

lim T"(v =V, At) = lim [I + (At)G]"

At—0 At—0

nAt=t nAt=t
= lim [I + (At)G]Y/ (A0

At—0

_ th’

yielding (I(t)) = In (m_100 mv] €' “=Y)1(0,0,0,1,0)) as the
continuous-time result.
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Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na™ channel
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Spectral Decomposition
o

Definitions

An Operator and its Spectrum

The spectrum of an operator A consists of the set of points A € C
such that AI — A is not invertible.
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Spectral Decomposition
[ ]

Definitions

An Operator and its Spectrum

The spectrum of an operator A consists of the set of points A € C
such that AI — A is not invertible.

4

The resolvent of A, R(z; A) = (2I — A)~!, where 2 is a

continuous complex variable, thus contains all of the spectral
information about A (and more).

\
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Spectral Decomposition
[ ]

Eigenvalues

A finite square matrix and its eigenvalues

o If an operator A can be represented as a finite square
matrix, then its spectrum is just the set of A’s eigenvalues:

Ay={NeC:det(\] - A) =0}
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Spectral Decomposition
[ ]

Eigenvalues

A finite square matrix and its eigenvalues

o If an operator A can be represented as a finite square
matrix, then its spectrum is just the set of A’s eigenvalues:

Ay={NeC:det(\] - A) =0}

o Compare the algebraic multiplicity a), geometric
multiplicity gy, and index vy of the eigenvalue A:

vy—1<ay—gr<ay-—-1.
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Spectral Decomposition
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Projection Operators

Definition

Projection Operator

The projection operator of A associated with the eigenvalue A is:

1
P R(z; A)dz
2711 C

= Res [(2] — Az Al

Ay

Complexity Sciences Center



Spectral Decomposition
[ ele}

Projection Operators

Definition

Projection Operator

The projection operator of A associated with the eigenvalue A is:

1
— R(z; A)dz
2711 Ch

= Res [(2] — ALz Al

A

<

If A is diagonalizable, then the projection operator can be simply
expressed as:

B A—cI
A= 1] el
ceAa\{A}

Complexity Sciences Center



Projection Operators

Definition

Projection Operator

The projection operator of A associated with the eigenvalue A is:

1
Ay= — R(z; A)dz
2711 C

= Res [(2] — Az Al

v

If A is diagonalizable, then the projection operator can be simply
expressed as: Ax = [een 0y 56 Ai

If a) = 1, then the projection operator can be simply expressed
as:

where (| is the left eigenvector of A associated with A and |A) is
the right eigenvector of A associated with . (Note: (A # |A)T ')

Complexity Science



Spectral Decomposition
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Projection Operators

Some General Properties of Projection Operators

e {A,} is a mutually orthogonal set:

AQ*A)\ = 6()\ A)\
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Spectral Decomposition
oeo

Projection Operators

Some General Properties of Projection Operators

e {A,} is a mutually orthogonal set:
tchA ::5QA44A

@ The projection operators are a resolution of the identity:

I=)Y" A,

AEA 4

Complexity Sciences Center
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Projection Operators

The Resolvent Resolved

Z Z _ m+1 (A_)‘I)m

for z ¢ A4, where C is the matrix of cofactors of zI — A.

v

Complexity Sciences Center



Spectral Decomposition
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Functions of Operators

Functions of Square Matrices

Cauchy integral formula

f(4) = 3 § HERG:A)ds
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Spectral Decomposition
[ eJele]

Functions of Operators

Functions of Square Matrices

Cauchy integral formula

:;m,fcﬂz)mfl dz
INETRES
S f, ) )

where the index vy of the eigenvalue A is the size of the largest
Jordan block associated with .

v

Complexity Sciences Center
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Functions of Operators

Functions of Square Matrices

Cauchy integral formula

F(4) = 3= § 12

vy—1

=Y > A(A-A) <2M£A(z_f(;))m+ldz) :

AeA 4 m=0

where the index vy of the eigenvalue X is the size of the largest
Jordan block associated with .

Complexity Sciences Center



Spectral Decomposition
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Functions of Operators

Functions of Diagonalizable Matrices

If A is diagonalizable and f(z) has no poles or zeros at A 4, then

FA) = 3 fVAN

AEA 4
where
A— (I
Ay = )
A H X—C
(EA,
C#A

Complexity Sciences Center



Functions of Operators

Powers of Matrices

AL = Z A,

AeAa\{0} m=1
vo—1
+[0€AA] | D drmAgA™
m=0

for any L € C, where ({:L ) is the generalized binomial coefficient:

L 1
( >: (L—n+1)
m m!n:1

with (6) =1.

Complexity Sciences Center



Spectral Deco
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Functions of Operators

Powers of Matrices

Al =" aa,

I+ Vil <L> AtA - I)m]

AeAA\{0}
vo—1
+[0€Aal | LmAA™
m=0

for any L € C, where ( #L ) is the generalized binomial coefficient:

(rﬁ) = % Il (L —n+1) with (6) - 1.
With the allowance that 0" = 4,0, AL can be written as:

vy—1

EA:A mzo ( ))\L‘mAA(A — A"

Complexity Sciences Center
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Restrictions on Eigenvalues: Perron—Frobenius Theorem for Stochastic Matrices

For a real-valued stochastic square matrix T

e The largest eigenvalue(s) of T have unity magnitude
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Restrictions on Eigenvalues: Perron—Frobenius Theorem for Stochastic Matrices

For a real-valued stochastic square matrix 1:
e The largest eigenvalue(s) of T have unity magnitude

0, Re(\)
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Restrictions on Eigenvalues: Perron—Frobenius Theorem for Stochastic Matrices

For a real-valued stochastic square matrix 1:
e The largest eigenvalue(s) of T have unity magnitude
o Unity itself is guaranteed to be an eigenvalue of W with
g1 = a1

7 Im(y)

0, Re(\)

Complexity Sciences Center



St Ma
L]

Restrictions on Eigenvalues: Perron—Frobenius Theorem for Stochastic Matrices

For a real-valued stochastic square matrix 1:
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o Unity itself is guaranteed to be an eigenvalue of W with
g1 = a1

Complexity Sciences Center




St Ma
L]

Restrictions on Eigenvalues: Perron—Frobenius Theorem for Stochastic Matrices

For a real-valued stochastic square matrix 1:
e The largest eigenvalue(s) of T have unity magnitude
o Unity itself is guaranteed to be an eigenvalue of W with
g1 = a1
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Restrictions on Eigenvalues: Perron—Frobenius Theorem for Stochastic Matrices
For a real-valued stochastic square matrix 1:

e The largest eigenvalue(s) of T have unity magnitude

o Unity itself is guaranteed to be an eigenvalue of W with
g1 = ax

o Complex eigenvalues of T' must occur in complex conjugate
pairs

Complexity Sciences Center
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Restrictions on Eigenvalues: Perron—Frobenius Theorem for Stochastic Matrices
For a real-valued stochastic square matrix 1:

e The largest eigenvalue(s) of T have unity magnitude

o Unity itself is guaranteed to be an eigenvalue of W with
g1 = ax

o Complex eigenvalues of T' must occur in complex conjugate
pairs

e Eigenvalues of T' that appear on the unit circle must be

roots of unity and correspond to persistent periodic behavior
in one of the attractors

0, Re(\)

Complexity Sciences Center



Stochastic Matrices
L]

Projection Operators

Projection Operators for Stochastic Transition Matrices

o T is row-stochastic; all other projection operators are
TOW-Z€ero:

Ty[1) = dx111)
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Stochastic Matrices
L]

Projection Operators

Projection Operators for Stochastic Transition Matrices

o T is row-stochastic; all other projection operators are
TOW-Z€ero:

Ty[1) = dx111)

o If T has only one attractor, then all rows of 77 are equivalent
and equal to the unique stationary distribution (7| :

Ty = [1) (|
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Stochastic Matrices
L]
Projection Operators

Projection Operators for Stochastic Transition Matrices

o T is row-stochastic; all other projection operators are
TOW-Z€ero:

Ty[1) = dx111)

o If T has only one attractor, then all rows of 77 are equivalent
and equal to the unique stationary distribution (7| :

Ty = [1) (|

e For non-ergodic processes, the expected stationary
distribution (7, | to arise from any initial distribution « is
simply

(ma| = {a|Th

Complexity Sciences Center



Signatures of Pairwise Correlation: Autocorrelation and Power Spectra

Autocorrelation function

The autocorrelation function can be expressed as

A1) = (Ko Ktr ),

Complexity Sciences Center



Simple Complexities
000
Signatures of Pairwise Correlation: Autocorrelation and Power Spectra

Autocorrelation function

The autocorrelation function can be expressed as
V7] = (X5 Xnsr >n where, e.g.:

BE{ Y'H,Xﬂ,‘f‘r}(T)O) = Z Z 55’ Pr(X, = 8, Xpir = 5)

s€EAs'EA
= Z zgs’Pr(s*---*s/)
——
s€As’'e A T—1 *s

= Z Z 5s' Z Pr(sws’)

seAs'€A weAT—1

= Z Z 35’ Z <7r‘T(s)T(w)T(,;/)‘1>

sEAS'€EA weAT !

2> §5’<7r|T(S)( 3 T<“’>)T(S’>\1>
s€EAs'EA weAT—1

T—1

=3 S sl ([ 3 760) 7,

s€EAs'EA i=1 s;€A

=T
=" s (mr T T

sEAS'EA

= (n| ( Z §T(s))T771 ( Z S/T(M) 1), Complexity Sciences Center

seA s'eA
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Signatures of Pairwise Correlation: Autocorrelation and Power Spectra

Autocorrelation function

The autocorrelation function can be expressed as
T] = <X7Xn+7- >

— [ 7r|(2|:c|2T )

zeA
B (z)\ pr—1
+ ol — 1] w\(gaﬂ’ )T (w%xT )
L (@) p-7-1 P CONIET
-7 —1] <7r|(§4xT )T (z%x’T )|1>

which is an even function of 7.
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Signatures of Pairwise Correlation: Autocorrelation and Power Spectra

Power Spectrum

1 N
Pc(w) = ]\}gnoo -~ <‘2Xn€_wm >
]\T[L:l
= Jim 5 D0 (V- ILhy(L)e "
=—N
= () (32 oP7) 1)+ 2Ref o] (D 77)
z€A zeA
x (e™] — T)_1< Z x/T(:c')> ’1>}

z’'eA

Note that (eI —T)71is R(z;T)|

z=ei*

Complexity Sciences Center
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Signatures of Pairwise Correlation: Autocorrelation and Power Spectra

Power Spectrum

If A={0,1}, then the power spectrum is simply:
P.(w) = (x| TW 1) + 2Re (x| TV (T — T) 7MW 1) .

Moreover, if T' is diagonalizable, then:

, 1
-1 _
(eI —T) ! = AEEA: 5D
T

yielding:

W7, )
Po(w) = (x| TV (1) +2 Y Re T T MTATA B
ANEAT ¢ o

Complexity Sciences Center



Simple Complexities
[ ele}

Example: Even Process

L9 0o 1 11
T(O):[S O} andT(l):[l (QJ—>T:T(0)+T(1):[2 2]

1 0
Ap ={AeC:det(\[ - T) =0} = {1,—3}
Since T is diagonalizable, T)\ = H(eAT\{/\} 1:\%%1’ yielding:

T4+i1 2 1
T =T :;,[2 J:,D@THW:(;,;MM
1 -1
_ -1 _ 1
Té_;1_3[—2 2]‘
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Example: Even Process

[]<7r|T(1)|1>+ ullr] = 1] (w TOTIIT 1)
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Example: Even Process

(Xn Xpsr ),
o[7] <7TIT(1)|1>+ ullr| = 1] (x| 7O 1)
5

[] +oaflr) = 1] Y AT m 7T 1)
AEAT

Complexity Sciences Center



Simple Complexities
(o] lo}

Example: Even Process

E<X7an+T >n
= 4[r] <7r|T<” 1)+ wllr| = 1] (x| TOTI7O 1)

= 8[r ] +ouflr) =1 Y AT @ 7T 1)
AEAT

= 617) 5+ ullr] = 1] (wl TO )2 + (=) () O, 7O 1))

3
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Example: Even Process

E<X7an+T >n
= 4[r] <7r|T<” 1)+ wllr| = 1] (x| TOTI7O 1)

= 8[r ]3 +ouflr) =1 Y AT @ 7T 1)
AEAT
=5[T]§+u[lfl—1] (<WIT(1)I1>2+(—%)'T'*1< 70T, T \1>)

2 ulrd =1 (34 (<) (=)

=3l 5
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Example: Even Process

vl = <X7an+‘r >n
— ) 2+ flr 1] 3 AL TOT T 1y
3
AEAT

= 6][7] % +uf|r| — 15 <4_ ! (_%)M,l)

Autocorrelation Function of Even Process

Autocorrelation
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Example: Even Process

(D), (1)
Po(w) = (n|TW 1) +2 3 Re T MTATA B
AEAT “ T
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Example: Even Process

(D), (1)
Po(w) = (n|TW 1) +2 3 Re T MTATA B
AEAT “ T

2 1 1
=219 4Re— — lRe——
3 + (9 eezw -1 18 eezw+ 5)
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Example: Even Process

(D), (1)
Po(w) = (n|TW 1) +2 3 Re T MTATA B
AEAT “ T

1 1
2| 2Re — LRe——
(9 -1 eem)
5

—|—4cosw>

_2
3
_ 1
3

(-
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Example: Even Process

P(w) = (x| TW 1) +2 3" Re (| T"

Simple Complexities
ooe

D7 (1)
ew — )\

AEAT
2 1 1
2 b2 (4Re 1 - 118Re.1>
E ( -1 e + 3
1
3 5 + 4cosw

w2

€9
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Example: Chaotic Crystals

For chaotic crystals (polytypes), the power spectra of the
stacking sequence given the alphabet of complex-valued structure
factors is called the diffraction spectrum. And this is exactly
what is measured with X-ray diffraction!
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Do correlation functions (or power spectra) fully capture
complexity?
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Do correlation functions (or power spectra) fully capture
complexity?
No!
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Do correlation functions (or power spectra) fully capture
complexity?
No!

Up next: Modes of information transduction; Exact complexity
measures in closed form!
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