Introduction Spectral Decomposition Stochastic Matrices Simple Complexities What's left?

NCASO Spring 2015

Complexity à la Mode: Spectral Methods for Complex Systems Part $e^{i\omega}|_{\omega=0}$

Paul M. Riechers

Complexity Sciences Center Department of Physics University of California, Davis

May 19th 2015

Complexity Sciences Center

$\begin{array}{c} \mathbf{Introduction} \\ 0000000000 \end{array}$	Spectral Decomposition	Stochastic Matrices 00	Simple Complexities	What's left?
T T 1 1 1				

Visualizing Modes

Implicitly, we already visualize modes.

$\begin{array}{c} \text{Introduction} \\ \circ \end{array}$	Spectral Decomposition	Stochastic Matrices 00	Simple Complexities	What's left?
TT: 1 .				

Visualizing Modes

Implicitly, we already visualize modes.

Spectral methods formalize and empower our intuition.

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left
00000000				
Some Motivatio	n			

Introduction •••••	Spectral Decomposition 000000000	Stochastic Matrices 00	Simple Complexities	What's left?
Some Motivatio	on			
~ -				

Directly from *any* HMM presentation of a process:

• Dynamics

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
• 00 000000				
Some Motivation	1			

- Dynamics
- Correlation functions

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
• 00 000000				
Some Motivation				

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
• 00 000000				
Some Motivation	L			

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- . . .

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
• 00 000000				
Some Motivation				

Directly from *any* HMM presentation of a process:

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps

• . . .

Directly from the Mixed-State Presentation (MSP) of any HMM:

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
• 00 000000				
Some Motivation				

Directly from *any* HMM presentation of a process:

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- . . .

Directly from the Mixed-State Presentation (MSP) of any HMM:

• Myopic entropy rates $h_{\mu}(L)$; asymptotic entropy rate h_{μ}

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
● 00 000000				
Some Motivation				

Directly from *any* HMM presentation of a process:

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- . . .

Directly from the Mixed-State Presentation (MSP) of any HMM:

- Myopic entropy rates $h_{\mu}(L)$; asymptotic entropy rate h_{μ}
- Past–Future Mutual Information (i.e., Excess Entropy E)

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
• 00 000000				
Some Motivation				

Directly from *any* HMM presentation of a process:

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- . . .

Directly from the Mixed-State Presentation (MSP) of any HMM:

- Myopic entropy rates $h_{\mu}(L)$; asymptotic entropy rate h_{μ}
- Past–Future Mutual Information (i.e., Excess Entropy E)
- Info shared btw. past and future, but *not* in the present (i.e., Elusive Information σ_{μ})

• . . .

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
• 00 000000				
Some Motivation	1			

Directly from *any* HMM presentation of a process:

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- . . .

Directly from the Mixed-State Presentation (MSP) of any HMM:

- Myopic entropy rates $h_{\mu}(L)$; asymptotic entropy rate h_{μ}
- Past–Future Mutual Information (i.e., Excess Entropy E)
- Info shared btw. past and future, but *not* in the present (i.e., Elusive Information σ_{μ})
- . . .

Directly from MSP of ϵ -machine:

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
• 00 000000				
Some Motivation				

Directly from *any* HMM presentation of a process:

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- . . .

Directly from the Mixed-State Presentation (MSP) of any HMM:

- Myopic entropy rates $h_{\mu}(L)$; asymptotic entropy rate h_{μ}
- Past–Future Mutual Information (i.e., Excess Entropy E)
- Info shared btw. past and future, but *not* in the present (i.e., Elusive Information σ_{μ})
- ...

Directly from MSP of $\epsilon\text{-machine:}$

• Average causal-state uncertainty $\mathcal{H}(L)$

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
• 00 000000				
Some Motivation				

Directly from *any* HMM presentation of a process:

- Dynamics
- Correlation functions
- Power spectra (including diffraction spectra of disordered crystals)
- Inter-Spike-Interval histograms and return maps
- . . .

Directly from the Mixed-State Presentation (MSP) of any HMM:

- Myopic entropy rates $h_{\mu}(L)$; asymptotic entropy rate h_{μ}
- Past–Future Mutual Information (i.e., Excess Entropy E)
- Info shared btw. past and future, but *not* in the present (i.e., Elusive Information σ_{μ})
- . . .

Directly from MSP of $\epsilon\text{-machine:}$

- Average causal-state uncertainty $\mathcal{H}(L)$
- Synchronization Information ${f S}$

Complexity Sciences Center

Introduction
Spectral Decomposition
Stochastic Matrices
Simple Complexities
What's left?

0●0000000
00000000
00
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
00000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
00000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
00000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
00000000
0000000
00

HMMs as Mathematical Objects

(Autonomous) Process specified by $\mathcal{A}, T^{\mathcal{A}}$, and μ_0

- $T^{\mathcal{A}^*}$ together with the identity I form a semigroup
- The spectral properties of T, $T^{\mathcal{A}}$, and functions of $T^{\mathcal{A}}$ (e.g., MSP) describe the modes of probability density and information flows

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
00000000				
Some Motivatio	n			

Any HMM will have:

- some set of states $\boldsymbol{\mathcal{S}}$,
- an alphabet \mathcal{A} of observables,
- a set of $|\mathcal{S}|$ -by- $|\mathcal{S}|$ labeled transition matrices $T^{\mathcal{A}} = \{T^{(x)}: T^{(x)}_{i,j} = \Pr(\mathcal{S}_t = \sigma^j | \mathcal{S}_{t-1} = \sigma^i)\}_{x \in \mathcal{A}}$ constituting the row-stochastic state-to-state transition matrix $T = \sum_{x \in \mathcal{A}} T^{(x)}$.

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
00000000				
Some Motivatio	n			

Any HMM will have:

- some set of states $\boldsymbol{\mathcal{S}}$,
- $\bullet\,$ an alphabet ${\mathcal A}$ of observables,
- a set of $|\mathcal{S}|$ -by- $|\mathcal{S}|$ labeled transition matrices $T^{\mathcal{A}} = \{T^{(x)}: T_{i,j}^{(x)} = \Pr(\mathcal{S}_t = \sigma^j | \mathcal{S}_{t-1} = \sigma^i)\}_{x \in \mathcal{A}}$ constituting the row-stochastic state-to-state transition matrix $T = \sum_{x \in \mathcal{A}} T^{(x)}$.

Note:

- bra-ket notation:
 - $|\mathbf{1}\rangle$ is the column vector of all ones
 - π is the stationary distribution over S; when cast as a row-vector: $\langle \pi | = \langle \pi | T$
- length-*n* 'word' $w = x_0 x_1 \dots x_{n-1} \in \mathcal{A}^n$
- Probability of observing w given initial distribution μ over **S** is: $\Pr_{\mu}(w) \equiv \Pr(X_{0:n} = w | S_0 \sim \mu) = \langle \mu | T^{(w)} | \mathbf{1} \rangle = \langle \mu | T^{(x_0)} T^{(x_1)} \dots T^{(x_{n-1})} | \mathbf{1} \rangle.$
- Stationary probability of w is: $Pr(w) = \langle \pi | T^{(w)} | \mathbf{1} \rangle$.
- $X_{0:n}$ is left-inclusive and right-exclusive.

Complexity Sciences Center

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?		
000000000						
Notation and Methods via Ion Channel Dynamics						

000000000	Spectral Decor	nposition Stochast 00	ic Matrices Simple 00000	e Complexities	What's left?
Notation and M	ethods via Ion (Channel Dynamics			
$\begin{pmatrix} 1\\ closed \end{pmatrix} = \begin{pmatrix} 3\alpha_m\\ \beta_m \end{pmatrix} (closed)$	$2 \frac{2\alpha_m}{2\beta_m}$ (closed)	$\begin{array}{c} k_1 \\ \alpha_m \\ 3\beta_m \\ \alpha_h \end{array} \begin{array}{c} k_3 \\ k_2 \\ k_2 \end{array} \begin{array}{c} 5 \\ \text{inactv} \\ k_2 \end{array}$	$ig) \qquad \mathcal{A}=\{0=$	= 'OFF', 1 =	'ON'}
$T^{(0)}(v,\Delta t$	$) = \begin{bmatrix} 1 - 3\alpha_m \Delta t \\ \beta_m \Delta t \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 3\alpha_m\Delta t\\ 1-(2\alpha_m+\beta_m+k_1)\Delta\\ 2\beta_m\Delta t\\ 0\\ 0\end{array}$	$t \qquad \begin{array}{c} 0 \\ 2\alpha_m \Delta t \\ 1 - (\alpha_m + 2\beta_m + k_2) \\ 3\beta_m \Delta t \\ \alpha_h \Delta t \end{array}$	$\begin{array}{ccc} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{bmatrix} 0\\k_1\Delta t\\k_2\Delta t\\k_3\Delta t\\-\alpha_h\Delta t\end{bmatrix}$
$T^{(1)}(v,\Delta t$	$) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 0 0 0	0 0 0 0 0	$0 \\ 0 \\ \alpha_m \Delta t \\ 1 - (3\beta_m + k_3) \Delta t \\ 0$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

where the α_m , β_m , and α_h are the voltage-dependent variables as in the Hodgkin and Huxley model.

The state-to-state transition matrix is:

$$T(v, \Delta t) = T^{(0)}(v, \Delta t) + T^{(1)}(v, \Delta t)$$
$$= I + (\Delta t)G(v) \quad ,$$

where I is the identity matrix and

$$G(v) \equiv \begin{bmatrix} -3\alpha_m & 3\alpha_m & 0 & 0 & 0\\ \beta_m & -(2\alpha_m + \beta_m + k_1) & 2\alpha_m & 0 & k_1\\ 0 & 2\beta_m & -(\alpha_m + 2\beta_m + k_2) & \alpha_m & k_2\\ 0 & 0 & 3\beta_m & -(3\beta_m + k_3) & k_3\\ 0 & 0 & \alpha_h & 0 & -\alpha_h \end{bmatrix}$$

Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na⁺ channel

$$\begin{split} \langle I(t=n\Delta t) \rangle \\ &= \sum_{w \in \mathcal{A}^{n-1}} \left[I_0 \Pr_{\mu}(w) \Pr_{\mu}(X_n = 1 | X_{0:n} = w) + 0 \Pr_{\mu}(w) \Pr_{\mu}(X_n = 0 | X_{0:n} = w) \right] \end{split}$$

Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na⁺ channel

$$\begin{split} \langle I(t=n\Delta t) \rangle \\ &= \sum_{w \in \mathcal{A}^{n-1}} \left[I_0 \Pr_{\mu}^{\mathrm{r}}(w) \Pr_{\mu}^{\mathrm{r}}(X_n = 1 | X_{0:n} = w) + 0 \Pr_{\mu}^{\mathrm{r}}(w) \Pr_{\mu}^{\mathrm{r}}(X_n = 0 | X_{0:n} = w) \right] \\ &= I_0 \sum_{w \in \mathcal{A}^{n-1}} \Pr_{\mu}^{\mathrm{r}}(X_{0:n+1} = w1) \end{split}$$

Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na⁺ channel

$$\begin{aligned} &[I(t = n\Delta t)) \\ &= \sum_{w \in \mathcal{A}^{n-1}} \left[I_0 \Pr_{\mu}(w) \Pr_{\mu}(X_n = 1 | X_{0:n} = w) + 0 \Pr_{\mu}(w) \Pr_{\mu}(X_n = 0 | X_{0:n} = w) \right] \\ &= I_0 \sum_{w \in \mathcal{A}^{n-1}} \Pr_{\mu}(X_{0:n+1} = w1) \\ &= I_0 \sum_{w \in \mathcal{A}^{n-1}} \langle \mu | T^{(w)} T^{(1)} | \mathbf{1} \rangle \end{aligned}$$

Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na⁺ channel

$$\begin{split} &I(t = n\Delta t)\rangle \\ &= \sum_{w \in \mathcal{A}^{n-1}} \left[I_0 \Pr_{\mu}(w) \Pr_{\mu}(X_n = 1 | X_{0:n} = w) + 0 \Pr_{\mu}(w) \Pr_{\mu}(X_n = 0 | X_{0:n} = w) \right] \\ &= I_0 \sum_{w \in \mathcal{A}^{n-1}} \Pr_{\mu}(X_{0:n+1} = w1) \\ &= I_0 \sum_{w \in \mathcal{A}^{n-1}} \langle \mu | T^{(w)} T^{(1)} | 1 \rangle \\ &= I_0 \langle \mu | \left(\sum_{w \in \mathcal{A}^{n-1}} T^{(w)} \right) T^{(1)} | 1 \rangle \end{split}$$

Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na⁺ channel

$$\begin{split} \langle I(t=n\Delta t) \rangle \\ &= \sum_{w \in \mathcal{A}^{n-1}} \left[I_0 \Pr_{\mu}^{\mathrm{r}}(w) \Pr_{\mu}^{\mathrm{r}}(X_n = 1 | X_{0:n} = w) + 0 \Pr_{\mu}(w) \Pr_{\mu}(X_n = 0 | X_{0:n} = w) \right] \\ &= I_0 \sum_{w \in \mathcal{A}^{n-1}} \Pr_{\mu}^{\mathrm{r}}(X_{0:n+1} = w1) \\ &= I_0 \sum_{w \in \mathcal{A}^{n-1}} \langle \mu | T^{(w)} T^{(1)} | \mathbf{1} \rangle \\ &= I_0 \langle \mu | \left(\sum_{w \in \mathcal{A}^{n-1}} T^{(w)} \right) T^{(1)} | \mathbf{1} \rangle \\ &= I_0 \langle \mu | \left[\prod_{\ell=1}^{n-1} \left(T^{(0)} + T^{(1)} \right) \right] T^{(1)} | \mathbf{1} \rangle \end{split}$$

Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na⁺ channel

$$\begin{split} \langle I(t = n\Delta t) \rangle \\ &= \sum_{w \in \mathcal{A}^{n-1}} \left[I_0 \Pr_{\mu}^{r}(w) \Pr_{\mu}^{r}(X_n = 1 | X_{0:n} = w) + 0 \Pr_{\mu}^{r}(w) \Pr_{\mu}^{r}(X_n = 0 | X_{0:n} = w) \right] \\ &= I_0 \sum_{w \in \mathcal{A}^{n-1}} \Pr_{\mu}^{r}(X_{0:n+1} = w1) \\ &= I_0 \sum_{w \in \mathcal{A}^{n-1}} \langle \mu | T^{(w)} T^{(1)} | \mathbf{1} \rangle \\ &= I_0 \langle \mu | \left(\sum_{w \in \mathcal{A}^{n-1}} T^{(w)} \right) T^{(1)} | \mathbf{1} \rangle \\ &= I_0 \langle \mu | \left[\prod_{\ell=1}^{n-1} \left(T^{(0)} + T^{(1)} \right) \right] T^{(1)} | \mathbf{1} \rangle \\ &= I_0 \langle \mu | \left(\prod_{\ell=1}^{n-1} T \right) T^{(1)} | \mathbf{1} \rangle \end{split}$$

Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na⁺ channel

$$\begin{split} \langle I(t = n\Delta t) \rangle \\ &= \sum_{w \in \mathcal{A}^{n-1}} \left[I_0 \Pr_{\mu}^{\mathbf{r}}(w) \Pr_{\mu}^{\mathbf{r}}(X_n = 1 | X_{0:n} = w) + 0 \Pr_{\mu}^{\mathbf{r}}(w) \Pr_{\mu}^{\mathbf{r}}(X_n = 0 | X_{0:n} = w) \right] \\ &= I_0 \sum_{w \in \mathcal{A}^{n-1}} \Pr_{\mu}^{\mathbf{r}}(X_{0:n+1} = w1) \\ &= I_0 \sum_{w \in \mathcal{A}^{n-1}} \langle \mu | T^{(w)} T^{(1)} | \mathbf{1} \rangle \\ &= I_0 \langle \mu | \left(\sum_{w \in \mathcal{A}^{n-1}} T^{(w)} \right) T^{(1)} | \mathbf{1} \rangle \\ &= I_0 \langle \mu | \left[\prod_{\ell=1}^{n-1} \left(T^{(0)} + T^{(1)} \right) \right] T^{(1)} | \mathbf{1} \rangle \\ &= I_0 \langle \mu | \left(\prod_{\ell=1}^{n-1} T \right) T^{(1)} | \mathbf{1} \rangle \\ &= I_0 \langle \mu | \left(\prod_{\ell=1}^{n-1} T \right) T^{(1)} | \mathbf{1} \rangle \end{split}$$

Causally structured model of voltage-gated Na⁺ channel

So,

$$\langle I(t = n\Delta t) \rangle = I_0 \langle \mu | T^{n-1} T^{(1)} | \mathbf{1} \rangle,$$

and

$$\lim_{\Delta t \to 0 \atop n\Delta t=t} T^n(v=V,\Delta t) = \lim_{\Delta t \to 0 \atop n\Delta t=t} [I + (\Delta t)G]^n$$
$$= \lim_{\Delta t \to 0} [I + (\Delta t)G]^{t/(\Delta t)}$$
$$= e^{Gt},$$

yielding $\langle I(t) \rangle = I_0 \langle \pi_{-100 \text{ mV}} | e^{t G(v=V)} | (0, 0, 0, 1, 0) \rangle$ as the continuous-time result.

Causally structured model of voltage-gated Na⁺ channel

Introduction 000000000	Spectral Decomposition $\bullet 00000000$	Stochastic Matrices 00	Simple Complexities	What's left?
Definitions				
	~			

An Operator and its Spectrum

Spectrum

The spectrum of an operator A consists of the set of points $\lambda \in \mathbb{C}$ such that $\lambda I - A$ is not invertible.

An Operator and its Spectrum

Spectrum

The spectrum of an operator A consists of the set of points $\lambda \in \mathbb{C}$ such that $\lambda I - A$ is not invertible.

Resolvent

The resolvent of A, $\mathcal{R}(z; A) \equiv (zI - A)^{-1}$, where z is a continuous complex variable, thus contains all of the spectral information about A (and more).

• If an operator A can be represented as a finite square matrix, then its spectrum is just the set of A's *eigenvalues*:

$$\Lambda_A \equiv \{\lambda \in \mathbb{C} : \det(\lambda I - A) = 0\}$$

• If an operator A can be represented as a finite square matrix, then its spectrum is just the set of A's *eigenvalues*:

$$\Lambda_A \equiv \{\lambda \in \mathbb{C} : \det(\lambda I - A) = 0\}$$

Compare the algebraic multiplicity a_λ, geometric multiplicity g_λ, and index ν_λ of the eigenvalue λ:

$$\nu_{\lambda} - 1 \leq a_{\lambda} - g_{\lambda} \leq a_{\lambda} - 1$$
.

Introduction 000000000	Spectral Decomposition 00000000	Stochastic Matrices 00	Simple Complexities	What's left?
Projection Ope	erators			
Definitio	on			

Projection Operator

The projection operator of A associated with the eigenvalue λ is:

$$A_{\lambda} \equiv \frac{1}{2\pi i} \oint_{C_{\lambda}} \mathcal{R}(z; A) dz$$
$$= \operatorname{Res} \left[(zI - A)^{-1}, z \to \lambda \right]$$

Introduction 000000000	Spectral Decomposition 00000000	Stochastic Matrices 00	Simple Complexities	What's left?
Projection Ope	erators			
Definitio	on			

Projection Operator

The projection operator of A associated with the eigenvalue λ is:

$$A_{\lambda} \equiv \frac{1}{2\pi i} \oint_{C_{\lambda}} \mathcal{R}(z; A) dz$$
$$= \operatorname{Res} \left[(zI - A)^{-1}, z \to \lambda \right]$$

If A is diagonalizable, then the projection operator can be simply expressed as:

$$A_{\lambda} = \prod_{\zeta \in \Lambda_A \setminus \{\lambda\}} \frac{A - \zeta I}{\lambda - \zeta}$$

	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?		
	0000000					
Projection Operators						
D C						

Projection Operator

Dennition

The projection operator of A associated with the eigenvalue λ is:

$$A_{\lambda} \equiv \frac{1}{2\pi i} \oint_{C_{\lambda}} \mathcal{R}(z; A) dz$$
$$= \operatorname{Res} \left[(zI - A)^{-1}, z \to \lambda \right]$$

If A is diagonalizable, then the projection operator can be simply expressed as: $A_{\lambda} = \prod_{\zeta \in \Lambda_A \setminus \{\lambda\}} \frac{A - \zeta I}{\lambda - \zeta}$. If $a_{\lambda} = 1$, then the projection operator can be simply expressed as:

$$A_{\lambda} = \frac{1}{\langle \boldsymbol{\lambda} | \boldsymbol{\lambda} \rangle} | \boldsymbol{\lambda} \rangle \langle \boldsymbol{\lambda} | ,$$

where $\langle \boldsymbol{\lambda} |$ is the left eigenvector of A associated with λ and $|\boldsymbol{\lambda} \rangle$ is the right eigenvector of A associated with λ . (Note: $\langle \boldsymbol{\lambda} | \neq | \boldsymbol{\lambda} \rangle^{\dagger}$!)

Introduction 000000000 Stochastic Matrices

Simple Complexities

What's left?

Projection Operators

Some General Properties of Projection Operators

• $\{A_{\lambda}\}$ is a mutually orthogonal set:

$$A_{\zeta}A_{\lambda} = \delta_{\zeta,\lambda} A_{\lambda}$$

Introduction 000000000 Stochastic Matrices

Simple Complexities

What's left?

Projection Operators

Some General Properties of Projection Operators

• $\{A_{\lambda}\}$ is a mutually orthogonal set:

$$A_{\zeta}A_{\lambda} = \delta_{\zeta,\lambda} A_{\lambda}$$

• The projection operators are a resolution of the identity:

$$I = \sum_{\lambda \in \Lambda_A} A_\lambda$$

 Introduction
 Spectral Decomposition
 Stochastic Matrices
 Simple Complexities
 What's left?

 00000000
 00000000
 00
 0000000
 0000000
 0000000

 Projection Operators
 Image: Complexity of the second seco

The Resolvent Resolved

Partial Fraction Decomposition of the Resolvent:

$$\mathcal{R}(z; A) = (zI - A)^{-1}$$

$$= \frac{\mathcal{C}^{\top}}{\det(zI - A)}$$

$$= \frac{\mathcal{C}^{\top}}{\prod_{\lambda \in \Lambda_A} (z - \lambda)^{a_{\lambda}}}$$

$$= \sum_{\lambda \in \Lambda_A} \sum_{m=0}^{a_{\lambda} - 1} \frac{1}{(z - \lambda)^{m+1}} A_{\lambda,m}$$

$$= \sum_{\lambda \in \Lambda_A} \sum_{m=0}^{\nu_{\lambda} - 1} \frac{1}{(z - \lambda)^{m+1}} A_{\lambda} (A - \lambda I)^m$$

for $z \notin \Lambda_A$, where \mathcal{C} is the matrix of cofactors of zI - A.

 Introduction
 Spectral Decomposition
 Stochastic Matrices
 Simple Complexities
 What's left?

 00000000
 00000000
 00
 00
 0000000
 0000000

 Functions of Operators
 Functional Complexities
 Functies
 Functional Complexities
 Func

Functions of Square Matrices

Cauchy integral formula

$$f(A) = \frac{1}{2\pi i} \oint_C f(z) \mathcal{R}(z; A) \, dz$$

,

 Introduction
 Spectral Decomposition
 Stochastic Matrices
 Simple Complexities
 What's left?

 00000000
 00000000
 00
 00
 0000000
 000000

 Functions of Operators
 0
 0
 0
 0

Functions of Square Matrices

Cauchy integral formula

$$\begin{split} f(A) &= \frac{1}{2\pi i} \oint_C f(z) \mathcal{R}(z; A) \, dz \\ &= \sum_{\lambda \in \Lambda_A} \left\{ A_\lambda \left(\frac{1}{2\pi i} \oint_{C_\lambda} \frac{f(z)}{z - \lambda} \, dz \right) \right. \\ &+ \sum_{m=1}^{\nu_\lambda - 1} A_\lambda \big(A - \lambda I \big)^m \left(\frac{1}{2\pi i} \oint_{C_\lambda} \frac{f(z)}{(z - \lambda)^{m+1}} \, dz \right) \right\}, \end{split}$$

where the index ν_{λ} of the eigenvalue λ is the size of the largest Jordan block associated with λ .

	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
	0000000000			
Functions of Op	erators			

Functions of Square Matrices

Cauchy integral formula

$$f(A) = \frac{1}{2\pi i} \oint_C f(z) \mathcal{R}(z; A) dz$$

= $\sum_{\lambda \in \Lambda_A} \sum_{m=0}^{\nu_{\lambda} - 1} A_{\lambda} (A - \lambda I)^m \left(\frac{1}{2\pi i} \oint_{C_{\lambda}} \frac{f(z)}{(z - \lambda)^{m+1}} dz \right) ,$

where the index ν_{λ} of the eigenvalue λ is the size of the largest Jordan block associated with λ .

If A is diagonalizable and f(z) has no poles or zeros at Λ_A , then

$$f(A) = \sum_{\lambda \in \Lambda_A} f(\lambda) A_{\lambda},$$

where

$$A_{\lambda} = \prod_{\substack{\zeta \in \Lambda_A \\ \zeta \neq \lambda}} \frac{A - \zeta I}{\lambda - \zeta}.$$

Introduction 000000000	Spectral Decomposition 00000000	Stochastic Matrices 00	Simple Complexities	What's left?
Functions of O	perators			
Doword	of Matricos			

$$A^{L} = \sum_{\lambda \in \Lambda_{A} \setminus \{0\}} \lambda^{L} A_{\lambda} \left[I + \sum_{m=1}^{\nu_{\lambda}-1} {L \choose m} \left(\lambda^{-1} A - I \right)^{m} \right]$$
$$+ \left[0 \in \Lambda_{A} \right] \left[\sum_{m=0}^{\nu_{0}-1} \delta_{L,m} A_{0} A^{m} \right]$$

for any $L \in \mathbb{C}$, where $\binom{L}{m}$ is the generalized binomial coefficient:

$$\binom{L}{m} = \frac{1}{m!} \prod_{n=1}^{m} (L-n+1)$$

with $\binom{L}{0} = 1$.

Introduction 000000000	Spectral Decomposition 000000000	Stochastic Matrices 00	Simple Complexities	What's left?
Functions of O	perators			
Powers	of Matrices			

$$A^{L} = \sum_{\lambda \in \Lambda_{A} \setminus \{0\}} \lambda^{L} A_{\lambda} \left[I + \sum_{m=1}^{\nu_{\lambda}-1} {L \choose m} \left(\lambda^{-1} A - I \right)^{m} \right]$$
$$+ \left[0 \in \Lambda_{A} \right] \left[\sum_{m=0}^{\nu_{0}-1} \delta_{L,m} A_{0} A^{m} \right]$$

for any $L \in \mathbb{C}$, where $\binom{L}{m}$ is the generalized binomial coefficient: $\binom{L}{m} = \frac{1}{m!} \prod_{n=1}^{m} (L - n + 1)$ with $\binom{L}{0} = 1$. With the allowance that $0^n = \delta_{n,0}$, A^L can be written as:

$$A^{L} = \sum_{\lambda \in \Lambda_{A}} \sum_{m=0}^{\nu_{\lambda}-1} {L \choose m} \lambda^{L-m} A_{\lambda} (A - \lambda I)^{m} .$$

	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
		•0		
Restrictions on l	Eigenvalues: Perron–Frobeniu	is Theorem for Stochasti	c Matrices	

• The largest eigenvalue(s) of T have unity magnitude

	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
		0		
Restrictions on l	Eigenvalues: Perron–Frobeniu	ıs Theorem for Stochasti	c Matrices	

• The largest eigenvalue(s) of T have unity magnitude

Introduction Spectral Decomposition	Stochastic Matrices	Simple Complexities What	What's left?	
000000000	00000000	\odot	0000000	
Restrictions on	Eigenvalues: Perron–Froben	ius Theorem for Stochas	tic Matrices	

- The largest eigenvalue(s) of T have unity magnitude
- Unity itself is guaranteed to be an eigenvalue of W with $g_1 = a_1$

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
000000000	00000000	•0	000000	
Restrictions on l	Eigenvalues: Perron–Frobeni	us Theorem for Stochast	ic Matrices	

- The largest eigenvalue(s) of T have unity magnitude
- Unity itself is guaranteed to be an eigenvalue of W with $g_1 = a_1$

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
000000000	00000000	•0	000000	
Restrictions on l	Eigenvalues: Perron–Frobeni	us Theorem for Stochast	ic Matrices	

- The largest eigenvalue(s) of T have unity magnitude
- Unity itself is guaranteed to be an eigenvalue of W with $g_1 = a_1$

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
000000000	00000000	•0	000000	
Restrictions on l	Eigenvalues: Perron–Frobeni	us Theorem for Stochast	ic Matrices	

- The largest eigenvalue(s) of T have unity magnitude
- Unity itself is guaranteed to be an eigenvalue of W with $g_1 = a_1$

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
		•0		
Restrictions on	Eigenvalues: Perron-Frob	enius Theorem for Stochas	stic Matrices	

- The largest eigenvalue(s) of T have unity magnitude
- Unity itself is guaranteed to be an eigenvalue of W with $g_1 = a_1$
- Complex eigenvalues of T must occur in complex conjugate pairs

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?
		\odot		
Restrictions on	Eigenvalues: Perron-Froben	ius Theorem for Stochast	tic Matrices	

- The largest eigenvalue(s) of T have unity magnitude
- Unity itself is guaranteed to be an eigenvalue of W with $g_1 = a_1$
- Complex eigenvalues of T must occur in complex conjugate pairs
- Eigenvalues of T that appear on the unit circle must be roots of unity and correspond to persistent periodic behavior in one of the attractors

Introduction 000000000	Spectral Decomposition	Stochastic Matrices $\circ \bullet$	Simple Complexities	What's left?
Projection Oper	ators			
Projectio	on Operators f	or Stochastic	Transition N	<i>A</i> atrices

• T_1 is row-stochastic; all other projection operators are row-zero:

$$T_{\lambda} \left| \mathbf{1} \right\rangle = \delta_{\lambda,1} \left| \mathbf{1} \right\rangle$$

 Introduction
 Spectral Decomposition
 Stochastic Matrices
 Simple Complexities
 What's left?

 00000000
 00000000
 0
 0
 0000000
 0
 0

 Projection Operators
 0
 0
 0
 0
 0
 0

Projection Operators for Stochastic Transition Matrices

• T_1 is row-stochastic; all other projection operators are row-zero:

$$T_{\lambda} \left| \mathbf{1} \right\rangle = \delta_{\lambda,1} \left| \mathbf{1} \right\rangle$$

• If T has only one attractor, then all rows of T_1 are equivalent and equal to the unique stationary distribution $\langle \pi |$:

$$T_1 = |\mathbf{1}\rangle \langle \pi |$$

 Introduction
 Spectral Decomposition
 Stochastic Matrices
 Simple Complexities
 What's left?

 00000000
 00000000
 0
 0
 0000000
 What's left?

 Projection Operators

Projection Operators for Stochastic Transition Matrices

• T_1 is row-stochastic; all other projection operators are row-zero:

$$T_{\lambda} \left| \mathbf{1} \right\rangle = \delta_{\lambda,1} \left| \mathbf{1} \right\rangle$$

• If T has only one attractor, then all rows of T_1 are equivalent and equal to the unique stationary distribution $\langle \pi |$:

$$T_1 = |\mathbf{1}\rangle \langle \pi |$$

• For non-ergodic processes, the expected stationary distribution $\langle \pi_{\alpha} |$ to arise from any initial distribution α is simply

$$\langle \pi_{\alpha} | = \langle \alpha | T_1$$

Introduction 000000000	Spectral Decomposition	Stochastic Matrices 00	Simple Complexities	What's left?	
Signatures of Pairwise Correlation: Autocorrelation and Power Spectra					
Autocor	relation function	on			

The *autocorrelation function* can be expressed as

$$\gamma[\tau] \equiv \left\langle \overline{X_n} \, X_{n+\tau} \, \right\rangle_n$$

Introduction 00000000	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?		
Signatures of Pairwise Correlation: Autocorrelation and Power Spectra						
Autocor	relation function	on				

The *autocorrelation function* can be expressed as

$$\begin{split} \gamma[\tau] &\equiv \left\langle \overline{X_n} \ X_{n+\tau} \right\rangle_n & \text{where, e.g.:} \\ \mathrm{E}\{\overline{X_n} X_{n+\tau}\}_{(\tau>0)} &= \sum_{s \in \mathcal{A}} \sum_{s' \in \mathcal{A}} \overline{s}s' \operatorname{Pr}(X_n = s, X_{n+\tau} = s') \\ &= \sum_{s \in \mathcal{A}} \sum_{s' \in \mathcal{A}} \overline{s}s' \operatorname{Pr}(\underline{s} \underbrace{\ast \cdots \ast s'}_{\tau-1 - s}s') \\ &= \sum_{s \in \mathcal{A}} \sum_{s' \in \mathcal{A}} \overline{s}s' \sum_{w \in \mathcal{A}^{\tau-1}} \operatorname{Pr}(sws') \\ &= \sum_{s \in \mathcal{A}} \sum_{s' \in \mathcal{A}} \overline{s}s' \sum_{w \in \mathcal{A}^{\tau-1}} \langle \pi | T^{(s)} T^{(w)} T^{(s')} | 1 \rangle \\ &= \sum_{s \in \mathcal{A}} \sum_{s' \in \mathcal{A}} \overline{s}s' \langle \pi | T^{(s)} \left(\sum_{w \in \mathcal{A}^{\tau-1}} T^{(w)} \right) T^{(s')} | 1 \rangle \\ &= \sum_{s \in \mathcal{A}} \sum_{s' \in \mathcal{A}} \overline{s}s' \langle \pi | T^{(s)} \left(\prod_{i=1}^{\tau-1} \sum_{s_i \in \mathcal{A}} T^{(s_i)} \right) T^{(s')} | 1 \rangle \\ &= \sum_{s \in \mathcal{A}} \sum_{s' \in \mathcal{A}} \overline{s}s' \langle \pi | T^{(s)} T^{\tau-1} T^{(s')} | 1 \rangle \\ &= \sum_{s \in \mathcal{A}} \sum_{s' \in \mathcal{A}} \overline{s}T^{(s)} T^{\tau-1} \left(\sum_{s' \in \mathcal{A}} S^{(T^{(s')})} \right) | 1 \rangle, \end{split}$$

The *autocorrelation function* can be expressed as

$$\gamma[\tau] \equiv \left\langle \overline{X_n} X_{n+\tau} \right\rangle_n$$

= $\delta[\tau] \left\langle \pi \right| \left(\sum_{x \in \mathcal{A}} |x|^2 T^{(x)} \right) |\mathbf{1} \right\rangle$
+ $u[\tau - 1] \left\langle \pi \right| \left(\sum_{x \in \mathcal{A}} \overline{x} T^{(x)} \right) T^{\tau - 1} \left(\sum_{x' \in \mathcal{A}} x' T^{(x')} \right) |\mathbf{1} \right\rangle$
+ $u[-\tau - 1] \left\langle \pi \right| \left(\sum_{x \in \mathcal{A}} x T^{(x)} \right) T^{-\tau - 1} \left(\sum_{x' \in \mathcal{A}} \overline{x'} T^{(x')} \right) |\mathbf{1} \right\rangle.$

which is an even function of τ .

Introduction 000000000	Spectral Decomposition	Stochastic Matrices 00	Simple Complexities $0 \bullet 0 \circ 0 \circ 0$	What's left?	
Signatures of Pairwise Correlation: Autocorrelation and Power Spectra					
Power Spectrum					

The continuous part of the *power spectrum* of a process is

$$P_{c}(\omega) = \lim_{N \to \infty} \frac{1}{N} \left\langle \left| \sum_{n=1}^{N} X_{n} e^{-i\omega n} \right|^{2} \right\rangle$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{L=-N}^{N} (N - |L|) \gamma(L) e^{-i\omega L}$$
$$= \langle \pi | \left(\sum_{x \in \mathcal{A}} |x|^{2} T^{(x)} \right) |\mathbf{1}\rangle + 2 \operatorname{Re} \left\{ \langle \pi | \left(\sum_{x \in \mathcal{A}} \overline{x} T^{(x)} \right) \right.$$
$$\times (e^{i\omega} I - T)^{-1} \left(\sum_{x' \in \mathcal{A}} x' T^{(x')} \right) |\mathbf{1}\rangle \right\}.$$

Note that $(e^{i\omega}I - T)^{-1}$ is $\mathcal{R}(z;T)|_{z=e^{i\omega}}$.

If $\mathcal{A} = \{0, 1\}$, then the power spectrum is simply:

$$P_{\rm c}(\omega) = \langle \pi | T^{(1)} | \mathbf{1} \rangle + 2 \text{Re} \langle \pi | T^{(1)} (e^{i\omega} I - T)^{-1} T^{(1)} | \mathbf{1} \rangle.$$

Moreover, if T is diagonalizable, then:

$$(e^{i\omega}I - T)^{-1} = \sum_{\lambda \in \Lambda_T} \frac{1}{e^{i\omega} - \lambda} T_{\lambda},$$

yielding:

$$P_{\rm c}(\omega) = \langle \pi | T^{(1)} | \mathbf{1} \rangle + 2 \sum_{\lambda \in \Lambda_T} \operatorname{Re} \frac{\langle \pi | T^{(1)} T_{\lambda} T^{(1)} | \mathbf{1} \rangle}{e^{i\omega} - \lambda}.$$

Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's
		000000	

Example: Even Process

$$\begin{split} T^{(0)} &= \begin{bmatrix} \frac{1}{2} & 0\\ 0 & 0 \end{bmatrix} \text{ and } T^{(1)} = \begin{bmatrix} 0 & \frac{1}{2}\\ 1 & 0 \end{bmatrix} \to T = T^{(0)} + T^{(1)} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2}\\ 1 & 0 \end{bmatrix}.\\ \Lambda_T &= \{\lambda \in \mathbb{C} : \det(\lambda I - T) = 0\} = \{1, -\frac{1}{2}\}\\ \text{Since } T \text{ is diagonalizable, } T_\lambda &= \prod_{\zeta \in \Lambda_T \setminus \{\lambda\}} \frac{T - \zeta I}{\lambda - \zeta}, \text{ yielding:}\\ T_1 &= \frac{T + \frac{1}{2}I}{1 + \frac{1}{2}} = \frac{1}{3} \begin{bmatrix} 2 & 1\\ 2 & 1 \end{bmatrix} = |\mathbf{1}\rangle \, \langle \pi| \to \pi = (\frac{2}{3}, \frac{1}{3}) \text{ and}\\ T_{-\frac{1}{2}} &= \frac{T - I}{-\frac{1}{2} - 1} = \frac{1}{3} \begin{bmatrix} 1 & -1\\ -2 & 2 \end{bmatrix}. \end{split}$$

Introduction 000000000	Spectral Decomposition	Stochastic Matrices 00	Simple Complexities 0000000	What's left?
Example: Even	Process			

$$\gamma[\tau] \equiv \left\langle \overline{X_n} \, X_{n+\tau} \, \right\rangle_n$$

Introduction 000000000	Spectral Decomposition 000000000	Stochastic Matrices 00	Simple Complexities 0000000	What's left?
Example: Even	Process			

$$\gamma[\tau] \equiv \left\langle \overline{X_n} X_{n+\tau} \right\rangle_n$$

= $\delta[\tau] \langle \pi | T^{(1)} | \mathbf{1} \rangle + u[|\tau| - 1] \langle \pi | T^{(1)} T^{|\tau| - 1} T^{(1)} | \mathbf{1} \rangle$

Introduction 000000000	Spectral Decomposition	Stochastic Matrices 00	Simple Complexities	What's left?
Example: Even	Process			

$$\gamma[\tau] \equiv \left\langle \overline{X_n} X_{n+\tau} \right\rangle_n$$

= $\delta[\tau] \left\langle \pi | T^{(1)} | \mathbf{1} \right\rangle + u[|\tau| - 1] \left\langle \pi | T^{(1)} T^{|\tau| - 1} T^{(1)} | \mathbf{1} \right\rangle$
= $\delta[\tau] \frac{2}{3} + u[|\tau| - 1] \sum_{\lambda \in \Lambda_T} \lambda^{|\tau| - 1} \left\langle \pi | T^{(1)} T_\lambda T^{(1)} | \mathbf{1} \right\rangle$

Introduction 000000000	Spectral Decomposition	Stochastic Matrices 00	Simple Complexities	What's left?
Example: Even	Process			

$$\gamma[\tau] \equiv \langle \overline{X_n} X_{n+\tau} \rangle_n$$

= $\delta[\tau] \langle \pi | T^{(1)} | \mathbf{1} \rangle + u[|\tau| - 1] \langle \pi | T^{(1)} T^{|\tau| - 1} T^{(1)} | \mathbf{1} \rangle$
= $\delta[\tau] \frac{2}{3} + u[|\tau| - 1] \sum_{\lambda \in \Lambda_T} \lambda^{|\tau| - 1} \langle \pi | T^{(1)} T_\lambda T^{(1)} | \mathbf{1} \rangle$
= $\delta[\tau] \frac{2}{3} + u[|\tau| - 1] \left(\langle \pi | T^{(1)} | \mathbf{1} \rangle^2 + \left(-\frac{1}{2} \right)^{|\tau| - 1} \langle \pi | T^{(1)} T_{-\frac{1}{2}} T^{(1)} | \mathbf{1} \rangle \right)$

Introduction 000000000	Spectral Decomposition	Stochastic Matrices 00	Simple Complexities 0000000	What's left?
Example: Even	Process			
[_]	$\overline{\mathbf{V}} \mathbf{V}$			

$$\begin{split} \gamma[\tau] &\equiv \langle X_n X_{n+\tau} \rangle_n \\ &= \delta[\tau] \langle \pi | T^{(1)} | \mathbf{1} \rangle + u[|\tau| - 1] \langle \pi | T^{(1)} T^{|\tau| - 1} T^{(1)} | \mathbf{1} \rangle \\ &= \delta[\tau] \frac{2}{3} + u[|\tau| - 1] \sum_{\lambda \in \Lambda_T} \lambda^{|\tau| - 1} \langle \pi | T^{(1)} T_\lambda T^{(1)} | \mathbf{1} \rangle \\ &= \delta[\tau] \frac{2}{3} + u[|\tau| - 1] \left(\langle \pi | T^{(1)} | \mathbf{1} \rangle^2 + \left(-\frac{1}{2} \right)^{|\tau| - 1} \langle \pi | T^{(1)} T_{-\frac{1}{2}} T^{(1)} | \mathbf{1} \rangle \right) \\ &= \delta[\tau] \frac{2}{3} + u[|\tau| - 1] \left(\frac{4}{9} + \left(-\frac{1}{2} \right)^{|\tau| - 1} \left(-\frac{1}{18} \right) \right) \end{split}$$
Introduction 000000000	Spectral Decomposition	Stochastic Matrices 00	Simple Complexities 0000000	What's left?
Example: Even	Process			

$$\gamma[\tau] \equiv \left\langle \overline{X_n} \, X_{n+\tau} \right\rangle_n \\ = \delta[\tau] \, \frac{2}{3} + \, u[|\tau| - 1] \, \sum_{\lambda \in \Lambda_T} \lambda^{|\tau| - 1} \, \langle \pi | \, T^{(1)} T_\lambda T^{(1)} \, | \mathbf{1} \rangle \\ = \delta[\tau] \, \frac{2}{3} + u[|\tau| - 1] \frac{1}{9} \left(4 - \frac{1}{2} \left(-\frac{1}{2} \right)^{|\tau| - 1} \right)$$

Complexity Sciences Center

Spectral Decomposition	Stochastic Matrices	Simple Complexities
		0000000

Example: Even Process

$$P_{c}(\omega) = \langle \pi | T^{(1)} | \mathbf{1} \rangle + 2 \sum_{\lambda \in \Lambda_{T}} \operatorname{Re} \frac{\langle \pi | T^{(1)} T_{\lambda} T^{(1)} | \mathbf{1} \rangle}{e^{i\omega} - \lambda}$$

Spectral Decomposition

Stochastic Matrices

Simple Complexities 000000

Example: Even Process

$$P_{c}(\omega) = \langle \pi | T^{(1)} | \mathbf{1} \rangle + 2 \sum_{\lambda \in \Lambda_{T}} \operatorname{Re} \frac{\langle \pi | T^{(1)} T_{\lambda} T^{(1)} | \mathbf{1} \rangle}{e^{i\omega} - \lambda}$$
$$= \frac{2}{3} + 2 \left(\frac{4}{9} \operatorname{Re} \frac{1}{e^{i\omega} - 1} - \frac{1}{18} \operatorname{Re} \frac{1}{e^{i\omega} + \frac{1}{2}} \right)$$

Introduction Spectra 00000000 000000

Spectral Decomposition

Stochastic Matrices

Simple Complexities 0000000

What's left?

Example: Even Process

$$P_{c}(\omega) = \langle \pi | T^{(1)} | \mathbf{1} \rangle + 2 \sum_{\lambda \in \Lambda_{T}} \operatorname{Re} \frac{\langle \pi | T^{(1)} T_{\lambda} T^{(1)} | \mathbf{1} \rangle}{e^{i\omega} - \lambda}$$
$$= \frac{2}{3} + 2 \left(\frac{4}{9} \operatorname{Re} \frac{1}{e^{i\omega} - 1} - \frac{1}{18} \operatorname{Re} \frac{1}{e^{i\omega} + \frac{1}{2}} \right)$$
$$= \frac{1}{3} \left(1 - \frac{1}{5 + 4 \cos \omega} \right)$$

Introduction Spectral Decomposition 000000000 00000000 Stochastic Matrices

Simple Complexities 0000000

What's left?

Example: Even Process

Complexity Sciences Center

Introduction	Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?	
			000000		
Example: Chaotic Crystals					

For chaotic crystals (polytypes), the power spectra of the stacking sequence given the alphabet of complex-valued structure factors is called the diffraction spectrum. And this is exactly what is measured with X-ray diffraction!

Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?

Do correlation functions (or power spectra) fully capture complexity?

Introduction 000000000	Spectral Decomposition	Stochastic Matrices 00	Simple Complexities	What's left?

Do correlation functions (or power spectra) fully capture complexity? No!

Spectral Decomposition	Stochastic Matrices	Simple Complexities	What's left?

Do correlation functions (or power spectra) fully capture complexity? No!

Up next: Modes of information transduction; Exact complexity measures in closed form!