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Visualizing Modes

Lecture 28: Natural Computation & Self-Organization, Physics 256B (Spring 2013); Jim Crutchfield
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Implicitly, we already visualize modes.

Spectral methods formalize and empower our intuition.
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Some Motivation

Sample of Exact Results Obtained in Closed-Form:

Directly from any HMM presentation of a process:

Dynamics
Correlation functions
Power spectra (including diffraction spectra of disordered
crystals)
Inter-Spike-Interval histograms and return maps
. . .

Directly from the Mixed-State Presentation (MSP) of any HMM:

Myopic entropy rates hµ(L); asymptotic entropy rate hµ
Past–Future Mutual Information (i.e., Excess Entropy E)
Info shared btw. past and future, but not in the present (i.e.,
Elusive Information σµ)
. . .

Directly from MSP of ε-machine:

Average causal-state uncertainty H(L)
Synchronization Information S
. . .
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Some Motivation

HMMs as Mathematical Objects

(Autonomous) Process specified by A, TA, and µ0

TA
∗

together with the identity I form a semigroup

The spectral properties of T , TA, and functions of TA (e.g.,
MSP) describe the modes of probability density and
information flows
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Some Motivation

Any HMM will have:

some set of states S,
an alphabet A of observables,
a set of |S|-by-|S| labeled transition matrices

TA = {T (x) : T
(x)
i,j = Pr(St = σj |St−1 = σi)}x∈A constituting

the row-stochastic state-to-state transition matrix
T =

∑
x∈A T

(x).

Note:
bra–ket notation:

|1〉 is the column vector of all ones
π is the stationary distribution over S;
when cast as a row-vector: 〈π| = 〈π|T

length-n ‘word’ w = x0x1 . . . xn−1 ∈ An
Probability of observing w given initial distribution µ over
S is: Prµ(w) ≡ Pr(X0:n = w|S0 ∼ µ) = 〈µ|T (w) |1〉 =
〈µ|T (x0)T (x1) . . . T (xn−1) |1〉.
Stationary probability of w is: Pr(w) = 〈π|T (w) |1〉.
X0:n is left-inclusive and right-exclusive.
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Notation and Methods via Ion Channel Dynamics

‘hidden’ conformational states ∼ S

5.5 Voltage-Dependent Conductances 167
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Figure 5.7 Recording of the current passing through a single ion channel. This
is a synaptic receptor channel sensitive to the neurotransmitter acetylcholine. A
small amount of acetylcholine was applied to the preparation to produce occa-
sional channel openings. In the open state, the channel passes 6.6 pA at a holding
potential of -140 mV. This is equivalent to more than 107 charges per second pass-
ing through the channel, and corresponds to an open channel conductance of 47
pS. (From Hille, 1992.)

associated with active membrane conductances. Recordings of the current
flowing through single channels indicate that channels fluctuate rapidly
between open and closed states in a stochastic manner (figure 5.7). Models stochastic channel
of membrane and synaptic conductances must describe how the probabil-
ity that a channel is in an open, ion-conducting state at any given time
depends on the membrane potential (for a voltage-dependent conduc-
tance), the presence or absence of a neurotransmitter (for a synaptic con- voltage-dependent,

synaptic, and
Ca2+-dependent

conductances

ductance), or a number of other factors, such as the concentration of Ca2+
or other messenger molecules inside the cell. In this chapter, we consider
two classes of active conductances, voltage-dependent membrane conduc-
tances and transmitter-dependent synaptic conductances. An additional
type, the Ca2+-dependent conductance, is considered in chapter 6.

In a later section of this chapter, we discuss stochastic models of individ-
ual channels based on state diagrams and transition rates. However, most
neuron models use deterministic descriptions of the conductances arising
from many channels of a given type. This is justified because of the large
number of channels of each type in the cell membrane of a typical neu-
ron. If large numbers of channels are present, and if they fluctuate inde-
pendently of each other (which they do, to a good approximation), then,
from the law of large numbers, the fraction of channels open at any given
time is approximately equal to the probability that any one channel is in
an open state. This allows us to move between single-channel probabilis-
tic formulations and macroscopic deterministic descriptions of membrane
conductances.

We have denoted the conductance per unit area of membrane due to a set
of ion channels of type i by gi. The value of gi at any given time is deter-
mined by multiplying the conductance of an open channel by the density
of channels in the membrane and by the fraction of channels that are open
at that time. The product of the first two factors is a constant called the
maximal conductance that is denoted by gi. It is the conductance per unit
area of membrane if all the channels of type i are open. Maximal conduc-
tance parameters tend to range from µS/mm2 to mS/mm2. The fraction
of channels in the open state is equivalent to the probability of finding any

impoverished observed dynamic ∼ x0:t

5.7 Modeling Channels 177
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Figure 5.13 A model of the fast Na+ channel. The upper diagram shows the states
and transitions rates of the model. The values k1 = 0.24/ms, k2 = 0.4/ms, and
k3 = 1.5/ms were used in the simulations shown in the lower panels. For these
simulations, the membrane potential was initially held at -100 mV, then held at 10
mV for 20 ms, and finally returned to a holding potential of -100 mV. The smooth
curves in these panels show the current predicted by the Hodgkin-Huxley model
in this situation. The left panel shows a simulation of a single channel that opened
once during the depolarization. The middle panel shows the total current from 10
simulated channels, and the right panel corresponds to 100 channels. As the num-
ber of channels increases, the Hodgkin-Huxley model provides a fairly accurate
description of the current, but it is not identical to the channel model in this case.

Hodgkin-Huxley model, n is the probability of a subunit gate being in
the open state and 1 − n is the probability of it being closed. If we use
that same notation here, state 1 has four closed subunit gates, and thus
p1 = (1 − n)4. State 5, the open state, has four open subunit gates, so
p5 = n4 = P. State 2 has one open subunit gate, which can be any one of
the four subunit gates, and three closed states, making p2 = 4n(1 − n)3.
Similar arguments yield p3 = 6n2 (1 − n)2 and p4 = 4n3 (1 − n). These
expressions generate a solution to the above equations, provided that n
satisfies equation 5.16, as the reader can verify.

In the Hodgkin-Huxley model of the Na+ conductance, the activation and
inactivation processes are assumed to act independently. The schematic
in figure 5.8B, which cartoons the mechanism believed to be responsible
for inactivation, suggests that this assumption is incorrect. The ball that
inactivates the channel is located inside the cell membrane, where it cannot
be affected directly by the potential across the membrane. Furthermore, in
this scheme the ball cannot occupy the channel pore until the activation
gate has opened, making the two processes interdependent.

The state diagram in figure 5.13 reflects this by having a state-dependent,
voltage-independent inactivation mechanism. This diagram is a simpli- state-dependent

inactivationfied version of an Na+ channel model due to Patlak (1991). The sequence
of transitions that lead to channel opening through states 1, 2, 3, and 4 is

Recall that H–H model is acausal: IH–H
Na+ ∝ m3h.

Consequences?!

figures from Koester&Siegelbaum and Dayan&Abbott
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Figure 5.7 Recording of the current passing through a single ion channel. This
is a synaptic receptor channel sensitive to the neurotransmitter acetylcholine. A
small amount of acetylcholine was applied to the preparation to produce occa-
sional channel openings. In the open state, the channel passes 6.6 pA at a holding
potential of -140 mV. This is equivalent to more than 107 charges per second pass-
ing through the channel, and corresponds to an open channel conductance of 47
pS. (From Hille, 1992.)

associated with active membrane conductances. Recordings of the current
flowing through single channels indicate that channels fluctuate rapidly
between open and closed states in a stochastic manner (figure 5.7). Models stochastic channel
of membrane and synaptic conductances must describe how the probabil-
ity that a channel is in an open, ion-conducting state at any given time
depends on the membrane potential (for a voltage-dependent conduc-
tance), the presence or absence of a neurotransmitter (for a synaptic con- voltage-dependent,

synaptic, and
Ca2+-dependent

conductances

ductance), or a number of other factors, such as the concentration of Ca2+
or other messenger molecules inside the cell. In this chapter, we consider
two classes of active conductances, voltage-dependent membrane conduc-
tances and transmitter-dependent synaptic conductances. An additional
type, the Ca2+-dependent conductance, is considered in chapter 6.

In a later section of this chapter, we discuss stochastic models of individ-
ual channels based on state diagrams and transition rates. However, most
neuron models use deterministic descriptions of the conductances arising
from many channels of a given type. This is justified because of the large
number of channels of each type in the cell membrane of a typical neu-
ron. If large numbers of channels are present, and if they fluctuate inde-
pendently of each other (which they do, to a good approximation), then,
from the law of large numbers, the fraction of channels open at any given
time is approximately equal to the probability that any one channel is in
an open state. This allows us to move between single-channel probabilis-
tic formulations and macroscopic deterministic descriptions of membrane
conductances.

We have denoted the conductance per unit area of membrane due to a set
of ion channels of type i by gi. The value of gi at any given time is deter-
mined by multiplying the conductance of an open channel by the density
of channels in the membrane and by the fraction of channels that are open
at that time. The product of the first two factors is a constant called the
maximal conductance that is denoted by gi. It is the conductance per unit
area of membrane if all the channels of type i are open. Maximal conduc-
tance parameters tend to range from µS/mm2 to mS/mm2. The fraction
of channels in the open state is equivalent to the probability of finding any

impoverished observed dynamic ∼ x0:t
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Figure 5.13 A model of the fast Na+ channel. The upper diagram shows the states
and transitions rates of the model. The values k1 = 0.24/ms, k2 = 0.4/ms, and
k3 = 1.5/ms were used in the simulations shown in the lower panels. For these
simulations, the membrane potential was initially held at -100 mV, then held at 10
mV for 20 ms, and finally returned to a holding potential of -100 mV. The smooth
curves in these panels show the current predicted by the Hodgkin-Huxley model
in this situation. The left panel shows a simulation of a single channel that opened
once during the depolarization. The middle panel shows the total current from 10
simulated channels, and the right panel corresponds to 100 channels. As the num-
ber of channels increases, the Hodgkin-Huxley model provides a fairly accurate
description of the current, but it is not identical to the channel model in this case.

Hodgkin-Huxley model, n is the probability of a subunit gate being in
the open state and 1 − n is the probability of it being closed. If we use
that same notation here, state 1 has four closed subunit gates, and thus
p1 = (1 − n)4. State 5, the open state, has four open subunit gates, so
p5 = n4 = P. State 2 has one open subunit gate, which can be any one of
the four subunit gates, and three closed states, making p2 = 4n(1 − n)3.
Similar arguments yield p3 = 6n2 (1 − n)2 and p4 = 4n3 (1 − n). These
expressions generate a solution to the above equations, provided that n
satisfies equation 5.16, as the reader can verify.

In the Hodgkin-Huxley model of the Na+ conductance, the activation and
inactivation processes are assumed to act independently. The schematic
in figure 5.8B, which cartoons the mechanism believed to be responsible
for inactivation, suggests that this assumption is incorrect. The ball that
inactivates the channel is located inside the cell membrane, where it cannot
be affected directly by the potential across the membrane. Furthermore, in
this scheme the ball cannot occupy the channel pore until the activation
gate has opened, making the two processes interdependent.

The state diagram in figure 5.13 reflects this by having a state-dependent,
voltage-independent inactivation mechanism. This diagram is a simpli- state-dependent

inactivationfied version of an Na+ channel model due to Patlak (1991). The sequence
of transitions that lead to channel opening through states 1, 2, 3, and 4 is
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Figure 5.13 A model of the fast Na+ channel. The upper diagram shows the states
and transitions rates of the model. The values k1 = 0.24/ms, k2 = 0.4/ms, and
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simulations, the membrane potential was initially held at -100 mV, then held at 10
mV for 20 ms, and finally returned to a holding potential of -100 mV. The smooth
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in this situation. The left panel shows a simulation of a single channel that opened
once during the depolarization. The middle panel shows the total current from 10
simulated channels, and the right panel corresponds to 100 channels. As the num-
ber of channels increases, the Hodgkin-Huxley model provides a fairly accurate
description of the current, but it is not identical to the channel model in this case.

Hodgkin-Huxley model, n is the probability of a subunit gate being in
the open state and 1 − n is the probability of it being closed. If we use
that same notation here, state 1 has four closed subunit gates, and thus
p1 = (1 − n)4. State 5, the open state, has four open subunit gates, so
p5 = n4 = P. State 2 has one open subunit gate, which can be any one of
the four subunit gates, and three closed states, making p2 = 4n(1 − n)3.
Similar arguments yield p3 = 6n2 (1 − n)2 and p4 = 4n3 (1 − n). These
expressions generate a solution to the above equations, provided that n
satisfies equation 5.16, as the reader can verify.

In the Hodgkin-Huxley model of the Na+ conductance, the activation and
inactivation processes are assumed to act independently. The schematic
in figure 5.8B, which cartoons the mechanism believed to be responsible
for inactivation, suggests that this assumption is incorrect. The ball that
inactivates the channel is located inside the cell membrane, where it cannot
be affected directly by the potential across the membrane. Furthermore, in
this scheme the ball cannot occupy the channel pore until the activation
gate has opened, making the two processes interdependent.

The state diagram in figure 5.13 reflects this by having a state-dependent,
voltage-independent inactivation mechanism. This diagram is a simpli- state-dependent

inactivationfied version of an Na+ channel model due to Patlak (1991). The sequence
of transitions that lead to channel opening through states 1, 2, 3, and 4 is

Recall that H–H model is acausal: IH–H
Na+ ∝ m3h.

Consequences?!

figures from Koester&Siegelbaum and Dayan&Abbott



Complexity Sciences Center

Introduction Spectral Decomposition Stochastic Matrices Simple Complexities What’s left?

Notation and Methods via Ion Channel Dynamics

‘hidden’ conformational states ∼ S

5.5 Voltage-Dependent Conductances 167

4003002001000

0

-8

-4

t (ms)

c
u

rr
e

n
t 

(p
A

)

channel
closed

channel
open

Figure 5.7 Recording of the current passing through a single ion channel. This
is a synaptic receptor channel sensitive to the neurotransmitter acetylcholine. A
small amount of acetylcholine was applied to the preparation to produce occa-
sional channel openings. In the open state, the channel passes 6.6 pA at a holding
potential of -140 mV. This is equivalent to more than 107 charges per second pass-
ing through the channel, and corresponds to an open channel conductance of 47
pS. (From Hille, 1992.)

associated with active membrane conductances. Recordings of the current
flowing through single channels indicate that channels fluctuate rapidly
between open and closed states in a stochastic manner (figure 5.7). Models stochastic channel
of membrane and synaptic conductances must describe how the probabil-
ity that a channel is in an open, ion-conducting state at any given time
depends on the membrane potential (for a voltage-dependent conduc-
tance), the presence or absence of a neurotransmitter (for a synaptic con- voltage-dependent,

synaptic, and
Ca2+-dependent

conductances

ductance), or a number of other factors, such as the concentration of Ca2+
or other messenger molecules inside the cell. In this chapter, we consider
two classes of active conductances, voltage-dependent membrane conduc-
tances and transmitter-dependent synaptic conductances. An additional
type, the Ca2+-dependent conductance, is considered in chapter 6.

In a later section of this chapter, we discuss stochastic models of individ-
ual channels based on state diagrams and transition rates. However, most
neuron models use deterministic descriptions of the conductances arising
from many channels of a given type. This is justified because of the large
number of channels of each type in the cell membrane of a typical neu-
ron. If large numbers of channels are present, and if they fluctuate inde-
pendently of each other (which they do, to a good approximation), then,
from the law of large numbers, the fraction of channels open at any given
time is approximately equal to the probability that any one channel is in
an open state. This allows us to move between single-channel probabilis-
tic formulations and macroscopic deterministic descriptions of membrane
conductances.

We have denoted the conductance per unit area of membrane due to a set
of ion channels of type i by gi. The value of gi at any given time is deter-
mined by multiplying the conductance of an open channel by the density
of channels in the membrane and by the fraction of channels that are open
at that time. The product of the first two factors is a constant called the
maximal conductance that is denoted by gi. It is the conductance per unit
area of membrane if all the channels of type i are open. Maximal conduc-
tance parameters tend to range from µS/mm2 to mS/mm2. The fraction
of channels in the open state is equivalent to the probability of finding any

impoverished observed dynamic ∼ x0:t
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Figure 5.13 A model of the fast Na+ channel. The upper diagram shows the states
and transitions rates of the model. The values k1 = 0.24/ms, k2 = 0.4/ms, and
k3 = 1.5/ms were used in the simulations shown in the lower panels. For these
simulations, the membrane potential was initially held at -100 mV, then held at 10
mV for 20 ms, and finally returned to a holding potential of -100 mV. The smooth
curves in these panels show the current predicted by the Hodgkin-Huxley model
in this situation. The left panel shows a simulation of a single channel that opened
once during the depolarization. The middle panel shows the total current from 10
simulated channels, and the right panel corresponds to 100 channels. As the num-
ber of channels increases, the Hodgkin-Huxley model provides a fairly accurate
description of the current, but it is not identical to the channel model in this case.

Hodgkin-Huxley model, n is the probability of a subunit gate being in
the open state and 1 − n is the probability of it being closed. If we use
that same notation here, state 1 has four closed subunit gates, and thus
p1 = (1 − n)4. State 5, the open state, has four open subunit gates, so
p5 = n4 = P. State 2 has one open subunit gate, which can be any one of
the four subunit gates, and three closed states, making p2 = 4n(1 − n)3.
Similar arguments yield p3 = 6n2 (1 − n)2 and p4 = 4n3 (1 − n). These
expressions generate a solution to the above equations, provided that n
satisfies equation 5.16, as the reader can verify.

In the Hodgkin-Huxley model of the Na+ conductance, the activation and
inactivation processes are assumed to act independently. The schematic
in figure 5.8B, which cartoons the mechanism believed to be responsible
for inactivation, suggests that this assumption is incorrect. The ball that
inactivates the channel is located inside the cell membrane, where it cannot
be affected directly by the potential across the membrane. Furthermore, in
this scheme the ball cannot occupy the channel pore until the activation
gate has opened, making the two processes interdependent.

The state diagram in figure 5.13 reflects this by having a state-dependent,
voltage-independent inactivation mechanism. This diagram is a simpli- state-dependent

inactivationfied version of an Na+ channel model due to Patlak (1991). The sequence
of transitions that lead to channel opening through states 1, 2, 3, and 4 is

Recall that H–H model is acausal: IH–H
Na+ ∝ m3h.

Consequences?!

figures from Koester&Siegelbaum and Dayan&Abbott
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Figure 5.7 Recording of the current passing through a single ion channel. This
is a synaptic receptor channel sensitive to the neurotransmitter acetylcholine. A
small amount of acetylcholine was applied to the preparation to produce occa-
sional channel openings. In the open state, the channel passes 6.6 pA at a holding
potential of -140 mV. This is equivalent to more than 107 charges per second pass-
ing through the channel, and corresponds to an open channel conductance of 47
pS. (From Hille, 1992.)

associated with active membrane conductances. Recordings of the current
flowing through single channels indicate that channels fluctuate rapidly
between open and closed states in a stochastic manner (figure 5.7). Models stochastic channel
of membrane and synaptic conductances must describe how the probabil-
ity that a channel is in an open, ion-conducting state at any given time
depends on the membrane potential (for a voltage-dependent conduc-
tance), the presence or absence of a neurotransmitter (for a synaptic con- voltage-dependent,

synaptic, and
Ca2+-dependent

conductances

ductance), or a number of other factors, such as the concentration of Ca2+
or other messenger molecules inside the cell. In this chapter, we consider
two classes of active conductances, voltage-dependent membrane conduc-
tances and transmitter-dependent synaptic conductances. An additional
type, the Ca2+-dependent conductance, is considered in chapter 6.

In a later section of this chapter, we discuss stochastic models of individ-
ual channels based on state diagrams and transition rates. However, most
neuron models use deterministic descriptions of the conductances arising
from many channels of a given type. This is justified because of the large
number of channels of each type in the cell membrane of a typical neu-
ron. If large numbers of channels are present, and if they fluctuate inde-
pendently of each other (which they do, to a good approximation), then,
from the law of large numbers, the fraction of channels open at any given
time is approximately equal to the probability that any one channel is in
an open state. This allows us to move between single-channel probabilis-
tic formulations and macroscopic deterministic descriptions of membrane
conductances.

We have denoted the conductance per unit area of membrane due to a set
of ion channels of type i by gi. The value of gi at any given time is deter-
mined by multiplying the conductance of an open channel by the density
of channels in the membrane and by the fraction of channels that are open
at that time. The product of the first two factors is a constant called the
maximal conductance that is denoted by gi. It is the conductance per unit
area of membrane if all the channels of type i are open. Maximal conduc-
tance parameters tend to range from µS/mm2 to mS/mm2. The fraction
of channels in the open state is equivalent to the probability of finding any
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Figure 5.13 A model of the fast Na+ channel. The upper diagram shows the states
and transitions rates of the model. The values k1 = 0.24/ms, k2 = 0.4/ms, and
k3 = 1.5/ms were used in the simulations shown in the lower panels. For these
simulations, the membrane potential was initially held at -100 mV, then held at 10
mV for 20 ms, and finally returned to a holding potential of -100 mV. The smooth
curves in these panels show the current predicted by the Hodgkin-Huxley model
in this situation. The left panel shows a simulation of a single channel that opened
once during the depolarization. The middle panel shows the total current from 10
simulated channels, and the right panel corresponds to 100 channels. As the num-
ber of channels increases, the Hodgkin-Huxley model provides a fairly accurate
description of the current, but it is not identical to the channel model in this case.

Hodgkin-Huxley model, n is the probability of a subunit gate being in
the open state and 1 − n is the probability of it being closed. If we use
that same notation here, state 1 has four closed subunit gates, and thus
p1 = (1 − n)4. State 5, the open state, has four open subunit gates, so
p5 = n4 = P. State 2 has one open subunit gate, which can be any one of
the four subunit gates, and three closed states, making p2 = 4n(1 − n)3.
Similar arguments yield p3 = 6n2 (1 − n)2 and p4 = 4n3 (1 − n). These
expressions generate a solution to the above equations, provided that n
satisfies equation 5.16, as the reader can verify.

In the Hodgkin-Huxley model of the Na+ conductance, the activation and
inactivation processes are assumed to act independently. The schematic
in figure 5.8B, which cartoons the mechanism believed to be responsible
for inactivation, suggests that this assumption is incorrect. The ball that
inactivates the channel is located inside the cell membrane, where it cannot
be affected directly by the potential across the membrane. Furthermore, in
this scheme the ball cannot occupy the channel pore until the activation
gate has opened, making the two processes interdependent.

The state diagram in figure 5.13 reflects this by having a state-dependent,
voltage-independent inactivation mechanism. This diagram is a simpli- state-dependent

inactivationfied version of an Na+ channel model due to Patlak (1991). The sequence
of transitions that lead to channel opening through states 1, 2, 3, and 4 is

Recall that H–H model is acausal: IH–H
Na+ ∝ m3h.

Consequences?!

figures from Koester&Siegelbaum and Dayan&Abbott
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Networks are seen at many levels throughout the neu-

roscience community, from modeling ion channel dynam-

ics to spiking patterns to neural networks, and beyond.

We consider examples from several of these levels here.

For consistency, we will display all state-based models

as hidden Markov models (HMMs). Each HMM will have

some set of states S, an alphabet A of observables, a set

of labeled transition matrices TA = {T (x) : x 2 A} con-

stituting the row-stochastic state-to-state transition ma-

trix T =
P

x2A T (x). The bra–ket notation will be used

to indicate row-vectors and column-vectors, respectively.

In particular, |1i is the column vector of all ones. Any

model we present is expected to represent the process

in that the probability of observing any length-n ‘word’

w = x0x1 . . . xn�1 2 An given some initial distribution

µ over S is accurately conveyed by Prµ(w) ⌘ Pr(X0:n =

w|S0 ⇠ µ) = hµ| T (w) |1i = hµ| T (x0)T (x1) . . . T (xn�1) |1i.
Note that our use of subscript in cases like X0:n is left-

inclusive and right-exclusive. The stationary probabili-

ties of any word are given via the stationary distribution

⇡ : h⇡| = h⇡| T : Pr(w) = h⇡| T (w) |1i.

I. ION CHANNELS

An example HMM for ion channel dynamics in the neu-

ron’s cell membrane is shown in Fig. ??. The states of the

model correspond to the various conformational states of

the complex channel proteins. The states are hidden in

the sense that they are not necessarily measured directly,

whereas the current is easily measured. The conforma-

tional states though are the causally relevant states for

the system, and there is a Markovian transition dynamic

over these conformational states. In terms of the current

through the channel, the channel is either ON, conduct-

ing some current I0, or OFF, conducting no current at
all. These observed alternatives constitute the observed

alphabet for this system A = {0 = ‘OFF’, 1 = ‘ON’}.

The labeled transition matrices for this example are:

T (0)(v,�t) =

2
66664

1 � 3↵m�t 3↵m�t 0 0 0

�m�t 1 � (2↵m + �m + k1)�t 2↵m�t 0 k1�t

0 2�m�t 1 � (↵m + 2�m + k2)�t 0 k2�t

0 0 3�m�t 0 k3�t

0 0 ↵h�t 0 1 � ↵h�t

3
77775

(1)

and

T (1)(v,�t) =

2
66664

0 0 0 0 0

0 0 0 0 0

0 0 0 ↵m�t 0

0 0 0 1 � (3�m + k3)�t 0

0 0 0 0 0

3
77775

, (2)

⇤ pmriechers@ucdavis.edu
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Figure 5.13 A model of the fast Na+ channel. The upper diagram shows the states
and transitions rates of the model. The values k1 = 0.24/ms, k2 = 0.4/ms, and
k3 = 1.5/ms were used in the simulations shown in the lower panels. For these
simulations, the membrane potential was initially held at -100 mV, then held at 10
mV for 20 ms, and finally returned to a holding potential of -100 mV. The smooth
curves in these panels show the current predicted by the Hodgkin-Huxley model
in this situation. The left panel shows a simulation of a single channel that opened
once during the depolarization. The middle panel shows the total current from 10
simulated channels, and the right panel corresponds to 100 channels. As the num-
ber of channels increases, the Hodgkin-Huxley model provides a fairly accurate
description of the current, but it is not identical to the channel model in this case.

Hodgkin-Huxley model, n is the probability of a subunit gate being in
the open state and 1 − n is the probability of it being closed. If we use
that same notation here, state 1 has four closed subunit gates, and thus
p1 = (1 − n)4. State 5, the open state, has four open subunit gates, so
p5 = n4 = P. State 2 has one open subunit gate, which can be any one of
the four subunit gates, and three closed states, making p2 = 4n(1 − n)3.
Similar arguments yield p3 = 6n2 (1 − n)2 and p4 = 4n3 (1 − n). These
expressions generate a solution to the above equations, provided that n
satisfies equation 5.16, as the reader can verify.

In the Hodgkin-Huxley model of the Na+ conductance, the activation and
inactivation processes are assumed to act independently. The schematic
in figure 5.8B, which cartoons the mechanism believed to be responsible
for inactivation, suggests that this assumption is incorrect. The ball that
inactivates the channel is located inside the cell membrane, where it cannot
be affected directly by the potential across the membrane. Furthermore, in
this scheme the ball cannot occupy the channel pore until the activation
gate has opened, making the two processes interdependent.

The state diagram in figure 5.13 reflects this by having a state-dependent,
voltage-independent inactivation mechanism. This diagram is a simpli- state-dependent

inactivationfied version of an Na+ channel model due to Patlak (1991). The sequence
of transitions that lead to channel opening through states 1, 2, 3, and 4 is

A = {0 = ‘OFF’, 1 = ‘ON’}

where the αm, βm, and αh are the voltage-dependent variables as in the Hodgkin and Huxley model.
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Causally structured model of voltage-gated Na+ channel

The state-to-state transition matrix is:

T (v,∆t) = T (0)(v,∆t) + T (1)(v,∆t)

= I + (∆t)G(v) ,

where I is the identity matrix and

2

where the ↵m, �m, and ↵h are the voltage-dependent

variables as in the Hodgkin and Huxley model:

↵m(v) =
(v + 40 mV)/10 mV

1 � exp [�(v + 40 mV)/10 mV]
,

�m(v) = 4 exp [�(v + 65 mV)/18 mV] ,

and

↵h(v) = 7
100 exp [�(v + 65 mV)/20 mV] ;

the ks are some constant rates, here modeled as k1 =
6
25 ms�1, k2 = 2

5 ms�1, and k3 = 3
2 ms�1. The state-to-

state transition matrix is:

T (v,�t) = T (0)(v,�t) + T (1)(v,�t) (3)

= I + (�t)G(v) , (4)

where I is the identity matrix and

G(v) ⌘

2
66664

�3↵m 3↵m 0 0 0

�m �(2↵m + �m + k1) 2↵m 0 k1

0 2�m �(↵m + 2�m + k2) ↵m k2

0 0 3�m �(3�m + k3) k3

0 0 ↵h 0 �↵h

3
77775

. (5)

At this point, we can calculate just about anything

about this model directly from the HMM. For close com-

parison to the Dayan and Abbott example, we will con-

sider the particular voltage protocol of �100 mV for all

time except a 10 mV pulse for 20 ms starting at t0 = 0.

The initial distribution over S is then µ = ⇡T (�100 mV).

Averaging over many channels, the expected value of cur-

rent flowing through a channel, given this protocol is:

hI(t = n�t)i (6)

=
X

w2An�1


I0 Pr

µ
(w) Pr

µ
(Xn = 1|X0:n = w) (7)

+ 0Pr
µ

(w) Pr
µ

(Xn = 0|X0:n = w)

�
(8)

= I0

X

w2An�1

Pr
µ

(X0:n+1 = w1) (9)

= I0

X

w2An�1

hµ| T (w)T (1) |1i (10)

= I0 hµ|
 X

w2An�1

T (w)

!
T (1) |1i (11)

= I0 hµ|
"

n�1Y

`=1
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where we are sampling time t0 < t < t0 + 20 ms at

intervals of �t. We could now express Eq. (14) in closed

form via a spectral decomposition, but wish to pursue a

slightly di↵erent track here.

If we wish to take the limit of �t ! 0 and still observe

the expected current at times t = n�t, we must let n !
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Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na+ channel

So,

〈I(t = n∆t)〉 = I0 〈µ|Tn−1T (1) |1〉 ,

and

lim
∆t→0
n∆t=t

Tn(v = V,∆t) = lim
∆t→0
n∆t=t

[I + (∆t)G]n

= lim
∆t→0

[I + (∆t)G]t/(∆t)

= eGt,

yielding 〈I(t)〉 = I0 〈π−100 mV| etG(v=V ) |(0, 0, 0, 1, 0)〉 as the
continuous-time result.
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Notation and Methods via Ion Channel Dynamics

Causally structured model of voltage-gated Na+ channel
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Definitions

An Operator and its Spectrum

Spectrum

The spectrum of an operator A consists of the set of points λ ∈ C
such that λI −A is not invertible.

Resolvent

The resolvent of A, R(z;A) ≡ (zI −A)−1, where z is a
continuous complex variable, thus contains all of the spectral

information about A (and more).
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Eigenvalues

A finite square matrix and its eigenvalues

If an operator A can be represented as a finite square
matrix, then its spectrum is just the set of A’s eigenvalues:

ΛA ≡ {λ ∈ C : det(λI −A) = 0}

Compare the algebraic multiplicity aλ, geometric
multiplicity gλ, and index νλ of the eigenvalue λ:

νλ − 1 ≤ aλ − gλ ≤ aλ − 1 .
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Projection Operators

Definition

Projection Operator

The projection operator of A associated with the eigenvalue λ is:

Aλ ≡
1

2πi

∮

Cλ

R(z;A) dz

= Res
[
(zI −A)−1, z → λ

]

If A is diagonalizable, then the projection operator can be simply
expressed as: Aλ =

∏
ζ∈ΛA\{λ}

A−ζI
λ−ζ .

If aλ = 1, then the projection operator can be simply expressed
as:

Aλ = 1
〈λ|λ〉 |λ〉 〈λ| ,

where 〈λ| is the left eigenvector of A associated with λ and |λ〉 is
the right eigenvector of A associated with λ. (Note: 〈λ| 6= |λ〉† !)
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Projection Operators

Some General Properties of Projection Operators

{Aλ} is a mutually orthogonal set:

AζAλ = δζ,λAλ

The projection operators are a resolution of the identity:

I =
∑

λ∈ΛA

Aλ
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Projection Operators

The Resolvent Resolved

Partial Fraction Decomposition of the Resolvent:

R(z;A) = (zI −A)−1

=
C>

det(zI −A)

=
C>∏

λ∈ΛA
(z − λ)aλ

=
∑

λ∈ΛA

aλ−1∑

m=0

1

(z − λ)m+1
Aλ,m

=
∑

λ∈ΛA

νλ−1∑

m=0

1

(z − λ)m+1
Aλ
(
A− λI

)m

for z /∈ ΛA, where C is the matrix of cofactors of zI −A.
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Functions of Operators

Functions of Square Matrices

Cauchy integral formula

f(A) =
1

2πi

∮

C
f(z)R(z;A) dz

=
∑

λ∈ΛA

{
Aλ

(
1

2πi

∮

Cλ

f(z)

z − λ dz
)

+

νλ−1∑

m=1

Aλ
(
A− λI

)m
(

1

2πi

∮

Cλ

f(z)

(z − λ)m+1
dz

)}

,

where the index νλ of the eigenvalue λ is the size of the largest
Jordan block associated with λ.
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Functions of Operators

Functions of Diagonalizable Matrices

If A is diagonalizable and f(z) has no poles or zeros at ΛA, then

f(A) =
∑

λ∈ΛA

f(λ)Aλ,

where

Aλ =
∏

ζ∈ΛA
ζ 6=λ

A− ζI
λ− ζ .
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Functions of Operators

Powers of Matrices

AL =
∑

λ∈ΛA\{0}
λLAλ

[
I +

νλ−1∑

m=1

(
L

m

)(
λ−1A− I

)m
]

+ [0 ∈ ΛA]

[
ν0−1∑

m=0

δL,mA0A
m

]

for any L ∈ C, where
(
L
m

)
is the generalized binomial coefficient:

(
L

m

)
=

1

m!

m∏

n=1

(L− n+ 1)

with
(
L
0

)
= 1.

for any L ∈ C, where
(
L
m

)
is the generalized

binomial coefficient:
(
L
m

)
= 1

m!

∏m
n=1(L− n+ 1) with

(
L
0

)
= 1.

With the allowance that 0n = δn,0, AL can be written as:

AL =
∑

λ∈ΛA

νλ−1∑

m=0

(
L

m

)
λL−mAλ(A− λI)m .
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Restrictions on Eigenvalues: Perron–Frobenius Theorem for Stochastic Matrices

For a real-valued stochastic square matrix T :

The largest eigenvalue(s) of T have unity magnitude

Unity itself is guaranteed to be an eigenvalue of W with
g1 = a1

Complex eigenvalues of T must occur in complex conjugate
pairs

Eigenvalues of T that appear on the unit circle must be
roots of unity and correspond to persistent periodic behavior
in one of the attractors
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The largest eigenvalue(s) of T have unity magnitude
Unity itself is guaranteed to be an eigenvalue of W with
g1 = a1

Complex eigenvalues of T must occur in complex conjugate
pairs

Eigenvalues of T that appear on the unit circle must be
roots of unity and correspond to persistent periodic behavior
in one of the attractors
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Projection Operators

Projection Operators for Stochastic Transition Matrices

T1 is row-stochastic; all other projection operators are
row-zero:

Tλ |1〉 = δλ,1 |1〉

If T has only one attractor, then all rows of T1 are equivalent
and equal to the unique stationary distribution 〈π| :

T1 = |1〉 〈π|

For non-ergodic processes, the expected stationary
distribution 〈πα| to arise from any initial distribution α is
simply

〈πα| = 〈α|T1
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Signatures of Pairwise Correlation: Autocorrelation and Power Spectra

Autocorrelation function

The autocorrelation function can be expressed as

γ[τ ] ≡
〈
XnXn+τ

〉
n
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〈
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〉
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where, e.g.:
for ⌧ 2 Z. Moreover, for ⌧ > 0, we can express E{ XnXn+⌧} as

E{ XnXn+⌧}(⌧>0) =
X

s2A

X

s02A
ss0 Pr(Xn = s, Xn+⌧ = s0) (4)

=
X

s2A

X

s02A
ss0 Pr(s ⇤ · · · ⇤| {z }

⌧�1 ⇤s
s0) (5)

=
X

s2A

X

s02A
ss0

X

w2A⌧�1

Pr(sws0) (6)

=
X

s2A

X

s02A
ss0

X

w2A⌧�1

h⇡|T (s)T (w)T (s0)|1i (7)

=
X

s2A

X

s02A
ss0h⇡|T (s)

⇣ X

w2A⌧�1

T (w)
⌘
T (s0)|1i (8)

=
X

s2A

X

s02A
ss0h⇡|T (s)

⇣⌧�1Y

i=1

X

si2A
T (si)

| {z }
=T

⌘
T (s0)|1i (9)

=
X

s2A

X

s02A
ss0h⇡|T (s)T ⌧�1T (s0)|1i (10)

= h⇡|
⇣X

s2A
sT (s)

⌘
T ⌧�1

⇣ X

s02A
s0T (s0)

⌘
|1i, (11)

where each ‘⇤’ in Eq. (5) is a wildcard symbol denoting an apathy for the particular symbol
observed in its place—i.e., the ⇤s denote that we have marginalized over the intervening
random variables, as explicated in the steps following (5). Similarly, for ⌧ < 0, we can
express E{Xn+⌧Xn} as

E{Xn�|⌧ |Xn}(⌧<0) =
X

s2A

X

s02A
ss0 Pr(Xn�|⌧ | = s, Xn = s0) (12)

=
X

s2A

X

s02A
ss0 Pr(s ⇤ · · · ⇤| {z }

|⌧ |�1 ⇤s
s0) (13)

=
X

s2A

X

s02A
ss0h⇡|T (s)T |⌧ |�1T (s0)|1i (14)

= h⇡|
⇣X

s2A
sT (s)

⌘
T |⌧ |�1

⇣ X

s02A
s0T (s0)

⌘
|1i. (15)
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Signatures of Pairwise Correlation: Autocorrelation and Power Spectra

Autocorrelation function

The autocorrelation function can be expressed as

γ[τ ] ≡
〈
XnXn+τ

〉
n

= δ[τ ] 〈π|
(∑

x∈A
|x|2T (x)

)
|1〉

+ u[τ − 1] 〈π|
(∑

x∈A
xT (x)

)
T τ−1

( ∑

x′∈A
x′T (x′)

)
|1〉

+ u[−τ − 1] 〈π|
(∑

x∈A
xT (x)

)
T−τ−1

( ∑

x′∈A
x′T (x′)

)
|1〉 .

which is an even function of τ .
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Signatures of Pairwise Correlation: Autocorrelation and Power Spectra

Power Spectrum

The continuous part of the power spectrum of a process is

Pc(ω) = lim
N→∞

1

N

〈∣∣∣
N∑

n=1

Xne
−iωn

∣∣∣
2
〉

= lim
N→∞

1

N

N∑

L=−N
(N − |L|)γ(L)e−iωL

= 〈π|
(∑

x∈A
|x|2T (x)

)
|1〉+ 2Re

{
〈π|
(∑

x∈A
xT (x)

)

× (eiωI − T )−1
( ∑

x′∈A
x′T (x′)

)
|1〉
}
.

Note that (eiωI − T )−1 is R(z;T )|z=eiω .
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Signatures of Pairwise Correlation: Autocorrelation and Power Spectra

Power Spectrum

If A = {0, 1}, then the power spectrum is simply:

Pc(ω) = 〈π|T (1) |1〉+ 2Re 〈π|T (1)(eiωI − T )−1T (1) |1〉 .

Moreover, if T is diagonalizable, then:

(eiωI − T )−1 =
∑

λ∈ΛT

1

eiω − λTλ,

yielding:

Pc(ω) = 〈π|T (1) |1〉+ 2
∑

λ∈ΛT

Re
〈π|T (1)TλT

(1) |1〉
eiω − λ .
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Example: Even Process

A B1
2 |

1
2 |

1|

T (0) =

[
1
2 0
0 0

]
and T (1) =

[
0 1

2
1 0

]
→ T = T (0) + T (1) =

[
1
2

1
2

1 0

]
.

ΛT = {λ ∈ C : det(λI − T ) = 0} = {1,−1
2}

Since T is diagonalizable, Tλ =
∏
ζ∈ΛT \{λ}

T−ζI
λ−ζ , yielding:

T1 =
T+ 1

2
I

1+ 1
2

= 1
3

[
2 1
2 1

]
= |1〉 〈π| → π = (2

3 ,
1
3) and

T− 1
2

= T−I
− 1

2
−1

= 1
3

[
1 −1
−2 2

]
.
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Example: Even Process

γ[τ ] ≡
〈
XnXn+τ

〉
n

= δ[τ ]
2

3
+ u[|τ | − 1]

∑

λ∈ΛT

λ|τ |−1 〈π|T (1)TλT
(1) |1〉

= δ[τ ]
2

3
+ u[|τ | − 1]1

9

(
4− 1

2

(
−1

2

)|τ |−1
)
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Example: Even Process
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Example: Chaotic Crystals

For chaotic crystals (polytypes), the power spectra of the
stacking sequence given the alphabet of complex-valued structure
factors is called the diffraction spectrum. And this is exactly
what is measured with X-ray diffraction!
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Do correlation functions (or power spectra) fully capture
complexity?

No!

Up next: Modes of information transduction; Exact complexity
measures in closed form!
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