Reading for this lecture:

NDAC, Sec. 5.0-5.2, 6.0-6.4, 7.0-7.3, & 9.0-9.4

## The Big Picture ... The Pendulum

ID Flows: Fixed Points model of static equilibrium

ID Flow:  $x \in \mathbb{R}$ 

 $\dot{x} = F(x)$ 

Fixed Points:  $x^* \in \mathbb{R}$  such that

$$\dot{x}|_{x^*} = 0$$

or

$$F(x^*) = 0$$

ID Flows: Fixed Points ...

Stability: What is linearized system at x? Investigate evolution of perturbations:  $x' = x + \delta x$ 

Local Flow: 
$$\delta \dot{x} = \left. \frac{dF}{dx} \right|_{x(t)} \delta x$$

Local Linear System:  $\delta \dot{x} = \lambda \ \delta x$ 

Solution: 
$$\delta x(t) \propto e^{\lambda t} \delta x(0)$$

Example Dynamical Systems ... ID Flows ... Stability Classification of Fixed Points:



2D Flows: Fixed Points model of static equilibrium

**2D Flow:**  $\vec{x} \in \mathbf{R}^2$ 

$$\dot{\vec{x}} = \vec{F}(\vec{x})$$
 or  $\dot{x} = f(x,y)$   
 $\vec{x} = (x,y)$   $\dot{y} = g(x,y)$   
 $\vec{F} = (f,g)$ 

Fixed Points:

 $(x^*, y^*)$  such that

$$\dot{\vec{x}}|_{(x^*,y^*)} = (0,0)$$

or

$$0 = f(x^*, y^*) 0 = g(x^*, y^*)$$

2D Flows: Fixed Points ...

Stability: What is linearized system at  $\vec{x}$ ? Investigate evolution of perturbations  $\delta x$ :  $\vec{x}' = \vec{x} + \delta \vec{x}$ 

$$\vec{x} = \vec{F}(\vec{x})$$
Local Flow:  $\delta \dot{\vec{x}} = \left. \frac{\partial \vec{F}}{\partial \vec{x}} \right|_{\vec{x}(t)} \cdot \delta \vec{x}$ 

Initial conditions:  $x(0) \ \delta x(0)$ 

Example Dynamical Systems ...

2D Flows: Fixed Points ...

Local Linear System:  $\delta \dot{\vec{x}} = A \cdot \delta \vec{x}$ 

Jacobian: 
$$A = \frac{\partial \vec{F}}{\partial \vec{x}} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}$$

Solution:

$$\delta \vec{x}(t) \propto e^{At} \delta \vec{x}(0)$$

Example Dynamical Systems ...

2D Flows: Fixed Points (an aside) ...

Solve linear ODEs: Find  $\vec{x}(t)$  given

 $\vec{x}(0)$  $\dot{\vec{x}} = A\vec{x}$ 

Eigenvalues and eigenvectors:  $\lambda_j$  and  $\vec{v}_j$  :

$$A\vec{v}_j = \lambda_j \vec{v}_j, \ j = 1, 2$$

Solution:

$$\vec{x}(t) = \sum_{j=1}^{2} \alpha_j e^{\lambda_j t} \vec{v}_j$$

0

where calculate  $\alpha_j$  so that:

$$\vec{x}(0) = \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2$$

Example Dynamical Systems ... 2D Flows ... Stability Classification of Fixed Points:

Eigenvalues of Jacobian A at  $\vec{x}: \lambda_1 \& \lambda_2 \in \mathbf{C}$ 

(Review: NDAC, Chapter 5)

Stable fixed point (aka sink, attractor):



 $\Re(\lambda_1), \Re(\lambda_2) < 0$ 

Example Dynamical Systems ... 2D Flows ...

Stability Classification of Fixed Points ...

Eigenvalues of Jacobian A at  $\vec{x} : \lambda_1 \& \lambda_2 \in \mathbf{C}$ 

Unstable fixed point (aka source, repellor):

 $\Re(\lambda_1), \Re(\lambda_2) > 0$ 



Example Dynamical Systems ... 2D Flows ... Stability Classification of Fixed Points:

Eigenvalues of Jacobian at  $\vec{x} : \lambda_1 \& \lambda_2 \in \mathbf{C}$ 

Saddle fixed point (mixed stability):



 $\Re(\lambda_1) > 0 \& \Re(\lambda_2) < 0$ 

Example Dynamical Systems ... 2D Flows ... Stability Classification of Fixed Points:

Eigenvalues of Jacobian at  $\vec{x} : \lambda_1 \ \& \ \lambda_2 \ \in \ \mathbf{C}$ 



Example Dynamical Systems ...

2D Flows ... Stability Classification of Fixed Points ... Magnitude of (in)stability:  $Det(A) = \lambda_1 \cdot \lambda_2$ 

 $\begin{array}{l} \operatorname{Det}(A) < 0 : \lambda_1, \lambda_2 \in \mathbf{R}, \ \lambda_1 > 0 \Rightarrow \lambda_2 < 0 \ \ \text{Saddles} \\ \\ \operatorname{Det}(A) > 0 : \\ \\ \text{Stable: } \operatorname{Tr}(A) < 0 & \operatorname{Tr}(A) = \lambda_1 + \lambda_2 \\ \\ \\ \text{Unstable: } \operatorname{Tr}(A) > 0 \\ \\ \\ \text{Marginal: } \operatorname{Tr}(A) = 0 \end{array}$ 

Example Dynamical Systems ...



Example Dynamical Systems ...

2D Flows ... Stability Classification of Fixed Points ...

Hyperbolic intersection of  $W^s$  and  $W^u$ :

Robust, if  $\Re(\lambda_i) \neq 0, \forall i$ 



Example Dynamical Systems ...

2D Flows ...

Stability Classification of Fixed Points ...

Non-hyperbolic intersection of  $W^s$  and  $W^u$ :

Fragile



Example Dynamical Systems ...

2D Flows: Limit Cycles isolated, closed trajectory: a periodic orbit:  $\vec{x}(t) = \vec{x}(t+p)$ , for all t(p is the period)

model of stable oscillation this is a new behavior type not possible in ID flows

Stable limit cycle



2D Flows: Limit Cycles ...

#### Unstable cycle



- Example Dynamical Systems ...
  - 2D Flows: Limit Cycles ...

Saddle cycle



2D Flows ... Limit Cycle Examples

Easy in polar coordinates:

$$\dot{r} = r(1 - r^2)$$
  
 $\dot{\theta} = 1$ 



2D Flows ... Limit Cycle Examples ...

#### Van der Pol Equations:

$$\ddot{x} + \mu(x^2 - a)\dot{x} + x = 0$$

or

$$\dot{x} = y$$
  
$$\dot{y} = -x + \mu y (a - x^2)$$

Nonlinear damping changes sign: Small oscillation: growth Large oscillation: damped



2D Flows ... Limit cycle existence (requires real work to show!)

Systems that can't have stable oscillations:

- I. Simple harmonic oscillator
- 2. Gradient systems:  $\dot{\vec{x}} = -\nabla V(\vec{x})$
- 3. Lyapunov systems

2D Flows ... Limit cycle existence (requires real work to show!) How to find limit cycles?

#### Poincaré-Bendixson Theorem:

(a) trajectory confined to trapping region (b) no fixed points then have limit cycle Csomewhere inside R.

Example Dynamical Systems ...

3D Flows: Fixed points

Limit cycles

and ... ?

Example Dynamical Systems ...

3D Flows: Quasiperiodicity product of two limit cycles: two irrational frequencies  $\omega_1 \neq \omega_2$ 



Example Dynamical Systems ...

3D Flows: Quasiperiodicity ... a new kind of behavior *not possible* in ID or 2D



3D Flows: Chaos

recurrent instability

one way to do this: Orbit reinjection near unstable fixed point

not possible in lower D flows

a new behavior type

3D Flows: Chaos ...

A topological construction: saddle fixed point at origin: 0ID unstable manifold:  $\dim(W^u(\mathbf{0})) = 1$ 2D stable manifold:  $\dim(W^s(\mathbf{0})) = 2$ two fixed points:  $C^+ \& C^-$ 



#### Does any ODE implement this flow design?

Example Dynamical Systems ...

3D Flows: Chaos ...

Does any ODE implement this design? Yes, the Lorenz equations:

$$\dot{x} = \sigma(y - x)$$
$$\dot{y} = rx - y - xz$$
$$\dot{z} = xy - bz$$

Parameters:  $\sigma, r, b > 0$ 

Exercise: Show fixed point at the origin can be a saddle, with 2 stable and 1 unstable directions Exercise: Show there is a symmetry  $(x, y) \rightarrow (-x, -y)$ 

3D Flows: Chaos ...

Lorenz ODE properties:

Trajectories stay in a bounded region near origin No stable fixed points or stable limit cycles inside Volume shrinks to zero (everywhere inside):

$$\begin{split} \dot{V} &= \int_{\text{region}} dV \ \nabla \cdot \vec{F}(\vec{x}) \\ \nabla \cdot \vec{F}(\vec{x}) &= \text{Tr}(A) = -\sigma - 1 - b \\ \dot{V} &= -(\sigma + 1 + b)V \\ V(t) &= e^{-(\sigma + 1 + b)t} \\ \end{split} \begin{array}{l} \text{Region volume shrinks} \\ \text{exponentially fast!} \end{split}$$

#### What does the invariant set look like?

3D Flows: Chaos ... Lorenz simulation demo: fixed point: limit cycle: chaotic attractor:

 $(\sigma, r, b) = (10, 28, 8/3)$ 



3D Flows: Chaos ... Lorenz attractor structure



#### Branched manifold



Example Dynamical Systems ...

From Continuous-Time Flows to Discrete-Time Maps:



Series of z-maxima:  $\hat{z}_1, \hat{z}_2, \hat{z}_3, \dots$ What happens if you plot  $\hat{z}_{n+1}$  versus  $\hat{z}_n$  ?

Example Dynamical Systems ...

From Continuous-Time Flows to Discrete-Time Maps:

Max-z Return Map:  $z_{n+1} = f(z_n)$ 



Example Dynamical Systems ...

From Continuous-Time Flows to Discrete-Time Maps:

Time of Return Function:  $T(z_n)$ 

Return Time Map:  $T_{n+1} = h(T_n)$ 



Example Dynamical Systems ...

3D Flows ...

Lorenz reduces to a cusp ID map: normalize to  $z_n \in [0, 1]$ 

$$z_{n+1} = a(1 - |1 - 2z_n|^b)$$

Parameters: height: a > 0

peak sharpness: 0 < b < 1



3D Flows ... Rössler equations



Parameters: a, b, c > 0

Example Dynamical Systems ...

3D Flows ... **Rössler chaotic attractor** 



Parameters: (a, b, c) = (0.2, 0.2, 5.7)

3D Flows ... Rössler branched manifold



Example Dynamical Systems ...

3D Flows ... Rössler maximum-x return map:  $x_{n+1} = f(x_n)$ 



Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Example Dynamical Systems ...

3D Flows ... When normalized to  $x_n \in [0, 1]$ get the Logistic Map:

$$x_{n+1} = rx_n(1 - x_n)$$





Classification of Possible Behaviors

| Dimension | Attractor                                   |
|-----------|---------------------------------------------|
|           | Fixed point                                 |
| 2         | Fixed point, Limit cycle                    |
| 3         | Fixed Point, Limit Cycle,<br>Torus, Chaotic |
| 4         | Above + Hyperchaos                          |
| 5         | Above + ?                                   |

Lorenz: 
$$\dot{x} = \sigma(y-x)$$
  $\sigma, r, b > 0$   
 $\dot{y} = rx - y - xz$   
 $\dot{z} = xy - bz$   
Rössler:  $\dot{x} = -y - z$   
 $\dot{y} = x + ay$   
 $\dot{z} = b + z(x - c)$ 

Cusp Map:  $z_n \in [0,1]$  a > 0, 0 < b < 1 $z_{n+1} = a(1 - |1 - 2z_n|^b)$ Logistic map:

$$x_{n+1} = rx_n(1 - x_n) \qquad x_n \in [0, 1] \qquad r \in [0, 4]$$

### Play with these!

# The Big Picture

Global view of the state space structures: The attractor-basin portrait

## The Learning Channel



Reading for next lecture:

NDAC, Chapter 3.