
Example Dynamical Systems

Reading for this lecture:

    NDAC, Sec. 5.0-5.2, 6.0-6.4, 7.0-7.3, & 9.0-9.4

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



The Big Picture ...

Lecture 2: Natural Computation & Self-Organization, Physics 256A (Winter 2018); Jim Crutchfield

The Pendulum



Example Dynamical Systems ...

1D Flows: Fixed Points
   model of static equilibrium

1D Flow: 

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Fixed Points:
                 such that

         or

ẋ = F (x)

ẋ |x� = 0

F (x�) = 0

x� � R

x � R



Example Dynamical Systems ...

1D Flows: Fixed Points ...

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Stability: What is linearized system at    ?
   Investigate evolution of perturbations:

Local Flow:

Local Linear System:

Solution:

x

�ẋ =
dF

dx

����
x(t)

�x

�ẋ = ⇥ �x

x0 = x+ �x

�x(t) / e�t�x(0)



Example Dynamical Systems ...
1D Flows ...
   Stability Classification of Fixed Points:

       Slope    of         at    :

       1. Stable:

       2. Unstable:

       3. Neutral:

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

F (x)�

� > 0

� < 0

� = 0

x
ẋ

x

Attractor Attractor

Repellor



Example Dynamical Systems ...

2D Flows: Fixed Points
   model of static equilibrium

2D Flow: 

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

ẋ = f(x, y)

ẏ = g(x, y)

!x ∈ R
2

Fixed Points:
                 such that

         or

�̇x = �F (�x) or

(x�, y�)

0 = f(x�, y�)
0 = g(x�, y�)

⌥x = (x, y)
⌥F = (f, g)

~̇x|(x⇤,y⇤) = (0, 0)



Example Dynamical Systems ...

2D Flows: Fixed Points ...

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Stability: What is linearized system at    ?
   Investigate evolution of perturbations     :

Local Flow: δ"̇x =
∂ "F

∂"x

∣

∣

∣

∣

∣

!x(t)

· δ"x

�x
~x0 = ~x+ �~x�x

�̇x = �F (�x)

x(0) �x(0)Initial conditions:



Example Dynamical Systems ...

2D Flows: Fixed Points ...

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Jacobian:

Local Linear System: ��̇x = A · ��x

Solution:

�~x(t) / eAt�~x(0)

<latexit sha1_base64="8eID3vhPZjLivSwlYVVBuk1xHyA="></latexit>

A =
@ ~F

@~x
=

0

B@

@f1
@x1

. . . @f1
@xn

...
...

@fn
@x1

. . . @fn
@xn

1

CA



Eigenvalues and eigenvectors:      and     :

Solve linear ODEs: Find        given   

Example Dynamical Systems ...

2D Flows: Fixed Points (an aside) ...

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

�j

where calculate     so that:↵j

Solution:

~x(0)

~̇x = A~x

~x(t)

~x(t) =
2X

j=1

↵je
�jt~vj

~x(0) = ↵1~v1 + ↵2~v2

~vj

A~vj = �j~vj , j = 1, 2



Example Dynamical Systems ...
2D Flows ...
   Stability Classification of Fixed Points:

       Eigenvalues of Jacobian A at    : 

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Stable fixed point (aka sink, attractor): 

!(λ1),!(λ2) < 0

λ1 & λ2 ∈ C

(Review: NDAC, Chapter 5)

�x



Example Dynamical Systems ...
2D Flows ...
   Stability Classification of Fixed Points ...

       Eigenvalues of Jacobian A at    : 

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

!(λ1),!(λ2) > 0

Unstable fixed point (aka source, repellor): 

λ1 & λ2 ∈ C�x



Example Dynamical Systems ...
2D Flows ...
   Stability Classification of Fixed Points:

       Eigenvalues of Jacobian at    : 

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

!(λ1) > 0 & !(λ2) < 0

Saddle fixed point (mixed stability): 

λ1 & λ2 ∈ C�x



Example Dynamical Systems ...
2D Flows ...
   Stability Classification of Fixed Points:

       Eigenvalues of Jacobian at    : 

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

!(λ1) = !(λ2) = 0

Center: 

λ1 & λ2 ∈ C�x



Example Dynamical Systems ...

2D Flows ...
   Stability Classification of Fixed Points ...

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Unstable: Tr(A) > 0

Stable: Tr(A) < 0

Marginal: Tr(A) = 0

Magnitude of (in)stability: Det(A) = λ1 · λ2

Det(A) > 0 :

Det(A) < 0 : λ1, λ2 ∈ R, λ1 > 0 ⇒ λ2 < 0 Saddles

Tr(A) = λ1 + λ2



Example Dynamical Systems ...

2D Flows ...
   Stability Classification of Fixed Points ...

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Tr(A)

Det(A)

Tr2(A) − 4Det(A) = 0
Unstable

Unstable Spirals

Stable Spirals

Stable

Saddles

Saddles



Example Dynamical Systems ...

2D Flows ...
   Stability Classification of Fixed Points ...

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Hyperbolic intersection of       and       :

   Robust, if !(λi) "= 0,∀i

Fixed point
persists under
perturbation

WuW s

W s

Wu Wu

W s



Example Dynamical Systems ...

2D Flows ...
   Stability Classification of Fixed Points ...

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Non-hyperbolic intersection of      and       :

   Fragile 

Fixed point
changes structure

under perturbation

WuW s

W s Wu



Example Dynamical Systems ...

2D Flows: Limit Cycles
    isolated, closed trajectory:
         a periodic orbit:

    model of stable oscillation
    this is a new behavior type
    not possible in 1D flows

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Stable limit cycle

(   is the period)p

~x(t) = ~x(t+ p), for all t



Example Dynamical Systems ...

2D Flows: Limit Cycles ...

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Unstable cycle



Example Dynamical Systems ...

2D Flows: Limit Cycles ...

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Saddle cycle



Example Dynamical Systems ...

2D Flows ...
    Limit Cycle Examples

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Easy in polar coordinates:

ṙ = r(1 − r
2)

θ̇ = 1



Example Dynamical Systems ...

2D Flows ...
    Limit Cycle Examples ...

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Van der Pol Equations:

or

ẋ = y

ẏ = −x + µy(a − x
2)

ẍ + µ(x2
− a)ẋ + x = 0

(a, µ) = (0.1, 10.0)

-2

y
2

-2
x
2

Nonlinear damping changes sign:
   Small oscillation: growth
   Large oscillation: damped



Example Dynamical Systems ...

2D Flows ...
    Limit cycle existence
    (requires real work to show!)

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Systems that can’t have stable oscillations:
   1. Simple harmonic oscillator
   2. Gradient systems:
   3. Lyapunov systems

�̇x = ��V (�x)



Example Dynamical Systems ...

2D Flows ...
    Limit cycle existence
    (requires real work to show!)

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

How to find limit cycles?

  Poincaré-Bendixson Theorem:
    (a) trajectory confined to trapping region
    (b) no fixed points
  then have limit cycle
       somewhere inside    .

R C

R

C



Example Dynamical Systems ...

3D Flows:
     Fixed points

     Limit cycles

     and ... ?

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows: Quasiperiodicity
    product of two limit cycles:
         two irrational frequencies

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

ω1 ω2

�1 �= �2

⇥



Example Dynamical Systems ...

3D Flows: Quasiperiodicity ...
    a new kind of behavior not possible in 1D or 2D

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

ω1

ω2

�1 �= �2

Torus attractor



Example Dynamical Systems ...

3D Flows: Chaos

    recurrent instability

    one way to do this:
           Orbit reinjection near unstable fixed point

    not possible in lower D flows

    a new behavior type

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows: Chaos ...
   A topological construction:
    saddle fixed point at origin:
       1D unstable manifold:
       2D stable manifold:
    two fixed points:

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

dim(Wu(0)) = 1
dim(W s(0)) = 2

C
+

& C
−

Orbits Cannot Cross: Need 3D!

C+ C�

0

Does any ODE implement this flow design?

0



Example Dynamical Systems ...

3D Flows: Chaos ...
    Does any ODE implement this design?
    Yes, the Lorenz equations:

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

ẋ = σ(y − x)

ẏ = rx − y − xz

ż = xy − bz

Exercise: Show fixed point at the origin can be a saddle, with 2 stable and 1 unstable directions

Parameters: σ, r, b > 0

Exercise: Show there is a symmetry (x, y) → (−x,−y)



Example Dynamical Systems ...

3D Flows: Chaos ...
    Lorenz ODE properties:
      Trajectories stay in a bounded region near origin
      No stable fixed points or stable limit cycles inside
      Volume shrinks to zero (everywhere inside):

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

V̇ = −(σ + 1 + b)V

V (t) = e
−(σ+1+b)t

What does the invariant set look like?

r · ~F (~x) = Tr(A) = �� � 1� b

V̇ =
Z

dV r · ~F (~x)

Region volume shrinks
exponentially fast!

region



Example Dynamical Systems ...

3D Flows: Chaos ...
    Lorenz simulation demo:
       fixed point:
       limit cycle:
       chaotic attractor:

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

(σ, r, b) = (10,28,8/3)



Example Dynamical Systems ...

3D Flows: Chaos ...
    Lorenz attractor structure

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Branched manifold



Example Dynamical Systems ...

From Continuous-Time Flows to Discrete-Time Maps:

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Series of z-maxima:

0

z

50

-45 x + y 45

bz1, bz2, bz3, . . .

What happens if you plot
           versus     ?bzn+1 bzn



Example Dynamical Systems ...

From Continuous-Time Flows to Discrete-Time Maps:

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Max-z Return Map: zn+1 = f(zn)

30

Zn+1

50

30 Zn 50

Z Max Return Map



Example Dynamical Systems ...

From Continuous-Time Flows to Discrete-Time Maps:

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Time of Return Function:

Return Time Map: Tn+1 = h(Tn)

T (zn)

0.5

Tn+1

1.5

0.5 Tn 1.5

Return Time Map

0.5

T(Z)

1.5

30 Z 50

Time of Return



Example Dynamical Systems ...

3D Flows ...
    Lorenz reduces to a cusp 1D map:
       normalize to 

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

zn ∈ [0, 1]

zn+1 = a(1 − |1 − 2zn|
b)

Parameters:
   height:
   peak sharpness: 

a > 0

0 < b < 1

0
0 1

1

zn

zn+1



Example Dynamical Systems ...

3D Flows ...
    Rössler equations

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Parameters: 

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c)

a, b, c > 0



Example Dynamical Systems ...

3D Flows ...
    Rössler chaotic attractor

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Parameters: (a, b, c) = (0.2, 0.2, 5.7)



Example Dynamical Systems ...

3D Flows ...
    Rössler branched manifold

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows ...
    Rössler maximum-x return map:

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

xn+1 = f(xn)

0
0

14

14

xn+1

xn



Example Dynamical Systems ...

3D Flows ...
When normalized to
  get the Logistic Map: 

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

xn ∈ [0, 1]

xn+1 = rxn(1 − xn)

Parameter (height): r ∈ [0, 4]

1

1

0
0

xn

xn+1



Example Dynamical Systems ...

Classification of Possible Behaviors

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

Dimension Attractor

1 Fixed point

2 Fixed point, Limit cycle

3 Fixed Point, Limit Cycle,
Torus, Chaotic

4 Above + Hyperchaos

5 Above + ?



Example Dynamical Systems ...

Lorenz:

Rössler:

Cusp Map:

Logistic map:

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield

xn ∈ [0, 1]xn+1 = rxn(1 − xn) r ∈ [0, 4]

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c)

zn ∈ [0, 1] a > 0, 0 < b < 1

ẋ = σ(y − x)

ẏ = rx − y − xz

ż = xy − bz

σ, r, b > 0

Play with these!

zn+1 = a(1 − |1 − 2zn|
b)



The Big Picture

Global view of the state space structures:
The attractor-basin portrait

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



The Learning Channel

0
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1

1 1
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You Are Here

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

Reading for next lecture:

    NDAC, Chapter 3.

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield


