Example Dynamical Systems

Reading for this lecture:

NDAC, Sec. 5.0-5.2,6.0-6.4,7.0-7.3, & 9.0-9.4

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



The Big Picture ...
The Pendulum

Lecture 2: Natural Computation & Self-Organization, Physics 256A (Winter 2018); Jim Crutchfield



Example Dynamical Systems ...

| D Flows: Fixed Points
model of static equilibrium

ID Flow: z € R
T = F(x)

Fixed Points:
™ € R such that

—

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

| D Flows: Fixed Points ...

Stability:What is linearized system at !
Investigate evolution of perturbations: z' = = + dx

adrF

— )
dx v

Local Flow: 0z =

x(t)

Local Linear System: dxz = \ iz

Solution: §z(t) ox e éx(0)

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...
|D Flows ...

Stability Classification of Fixed Points:
Slope A of F'(z)at x:

|.Stable: )\ < (0

Attractor

2.Unstable: A > 0 >

>

Attractor
< T

3.Neutral: AN =20

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield
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Example Dynamical Systems ...

2D Flows: Fixed Points
model of static equilibrium

2D Flow: Z ¢ R?

7 = F(Z)

ESTRRST]
IO
Vo /\1
~ B
SRS

Fixed Points:
(™, y") such that

a‘:’\(x*,y*) = (0, 0)
or

0=f(z",y")

0=g(z",y")

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

2D Flows: Fixed Points ...

Stability:What is linearized system at x !
Investigate evolution of perturbations §z: ¥’ = ¥+ 0%

7 = F(Z)
- F
Local Flow: 01 = a—_, 0x
ox .

Initial conditions: z(0) dx(0)

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

2D Flows: Fixed Points ...

Local Linear System: 6% = A - 6%

on . on
OF v on

Jacobian: A = 97 = . .
v Ofn 5
(9581 tU 8:13n

Solution:

0Z(t) ox e”t62(0)

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

2D Flows: Fixed Points (an aside) ...

Solve linear ODEs: Find Z (%) given
7#(0)
7= A%
Eigenvalues and eigenvectors: A; and v :
Av; = \jvs, 7 =1,2
Solution:

2
T(t) = § et where calculate o so that:
J=1

f(()) — ()41171 042”(72

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...
2D Flows ...

Stability Classification of Fixed Points:

Eigenvalues of Jacobian A atx : A\ & Ay € C

(Review: NDAC, Chapter 5)

Stable fixed point (aka sink, attractor):

R(A1), R(A2) <0 > > @ <« <

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...
2D Flows ...

Stability Classification of Fixed Points ...

Eigenvalues of Jacobian A atx : A\ & Ay € C

Unstable fixed point (aka source, repellor):

A

N N
~ Y

%()\1), %()\2) > () < < O > >
' SA

A/ ’/V\ \

/N

\ 4

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...
2D Flows ...

Stability Classification of Fixed Points:

Eigenvalues of Jacobianat : \; & Ay € C

Saddle fixed point (mixed stability):

N

%()\1) >0 & %()\2) <0 < q

b

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield
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Example Dynamical Systems ...
2D Flows ...

Stability Classification of Fixed Points:

Eigenvalues of Jacobianat : \; & Ay € C

Center:

R(AL) = R(A2) =0

N
-~/

ey

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

2D Flows ...
Stability Classification of Fixed Points ...

Magnitude of (in)stability: Det(A) = A1 - Ao
Det(A) < 0: )\1, Ao € R, A1 > 0= Ay <0 Saddles

Det(A) > 0:
Stable: Tr(A) < 0 Tr(A) = A1 4+ Ao
Unstable: Tr(A) > 0

Marginal: Tr(A) = 0

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

2D Flows ...
Stability Classification of Fixed Points:..." -

Tr(A) |

Saddles

=4
B

Saddles

—> > @ <« <«

A AN
Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter)},ﬂm %rut&?ﬁeld



Example Dynamical Systems ...

2D Flows ...
Stability Classification of Fixed Points ...

Hyperbolic intersection of W”and W":

Robust, if (A;) # 0, Vi
WS

Fixed point —)

persists under
perturbation W

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield
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Example Dynamical Systems ...

2D Flows ...
Stability Classification of Fixed Points ...

Non-hyperbolic intersection of W °and W*:
Fragile
ws W
Fixed point

changes structure e

under perturbation

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

2D Flows: Limit Cycles
isolated, closed trajectory:

a periodic orbit: Z(t) = Z(t + p), for all ¢
(p is the period)

model of stable oscillation
this is a new behavior type
not possible in 1D flows

Stable limit cycle

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

2D Flows: Limit Cycles ...

Unstable cycle

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

2D Flows: Limit Cycles ...

Saddle cycle

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

2D Flows ...
Limit Cycle Examples

Easy in polar coordinates:

ro= r(l—r°)

g = 1

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

2D Flows ...

Limit Cycle Examples ... (a, 1) = (0.1, 10.0)

Van der Pol Equations:

i+ p(z® —a)t +x =0 N /‘\ -
\_

r =
gy = —x+pyla—z?)

or

Nonlinear damping changes sign:
Small oscillation: growth Y
Large oscillation: damped

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

2D Flows ...
Limit cycle existence
(requires real work to show!)

Systems that can’t have stable oscillations:
|. Simple harmonic oscillator
2. Gradient systems: © = —VV (Z)
3. Lyapunov systems

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

2D Flows ...
Limit cycle existence
(requires real work to show!)

How to find limit cycles!?

Poincarée-Bendixson Theorem:
(a) trajectory confined to trapping region
(b) no fixed points

then have limit cycle C

somewhere inside 1.

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows:
Fixed points

Limit cycles

and ...?

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows: Quasiperiodicity
product of two limit cycles:
two irrational frequencies wi # wo

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows: Quasiperiodicity ...
a new kind of behavior not possible in ID or 2D

Torus attractor

=l
e 4

W1 W1 7# W2

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows: Chaos
recurrent instability

one way to do this:
Orbit reinjection near unstable fixed point

not possible in lower D flows

a new behavior type

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows: Chaos ...
A topological construction:

saddle fixed point at origin: 0
| D unstable manifold: dim(W*(0)) =1
2D stable manifold:  dim(1W/*(0)) = 2
two fixed points: C* & C~

< ), =
20
Orbits Cannot Cross: Need 3D!

Does any ODE implement this flow design?

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows: Chaos ...

Does any ODE implement this design!?
Yes, the Lorenz equations:

r = o(y—x)
= rr—yYy—2IT2
z = xy— bz

Parameters: 0, 7,b > (

Exercise: Show fixed point at the origin can be a saddle, with 2 stable and | unstable directions
Exercise: Show there is a symmetry (:U, y) — (—:E, —y)

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows: Chaos ...
Lorenz ODE properties:
Trajectories stay in a bounded region near origin
No stable fixed points or stable limit cycles inside
Volume shrinks to zero (everywhere inside):

V:/dvv.ﬁ(f)

region
V- -F(@)=Tr(A) = —-6—-1—b
V=—(c+1+0bV

_ _—(o+1+Db)t Region volume shrinks
V(t) — € exponentially fast!

What does the invariant set look like?

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows: Chaos ...
Lorenz simulation demo:
fixed point:
limit cycle:
chaotic attractor:

(o,r,b) = (10,28,8/3)

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows: Chaos ...
Lorenz attractor structure

Branched manifold

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

From Continuous-Time Flows to Discrete-Time Maps:

50
Series of z-maxima: 27, 29, 23, . . .
Z What happens if you plot
Zn1Versus z, !
0

45 X+y 45

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

From Continuous-Time Flows to Discrete-Time Maps:

Max-z Return Map: z,.1 = f(z,)

Z. Max Return Map
50
$
Zntl 1
®
%
30 : : : : : : : : :
30 Zn 50

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...
From Continuous-Time Flows to Discrete-Time Maps:

Time of Return Function: T'(z,,)

Return Time Map: T, .1 = h(T},)

Return Time Map
1.5
o
O
Time of Return ot
1.5 g | 9
| 'y
- /. Tn+1 [
0.5 30 : : : : Z : : : : 30
® o
0.5 ————
0.5 T

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows ...

Lorenz reduces to a cusp |D map:
normalize to 2z, € [0, 1]

Zni1 = a(l — |1 — 2zn\b)
1

Parameters:
height: a > 0
peak sharpness: 0 < b < 1 Zn+1

0

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows ...
Rossler equations

r = —y—=z
y = x+ay
b+ z(x — c)

S
|

Parameters: a, b, c > 0

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows ...
Rossler chaotic attractor

Parameters: (a,b,c) = (0.2,0.2,5.7)

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield




Example Dynamical Systems ...

3D Flows ...
Rossler branched manifold

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows ...
Rossler maximum-x return map: x,11 = f(xy)

14 e
| SN
wnl. 7 '.‘
O-:::::::::::::
0 T 14

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

3D Flows ...

When normalized to z,, € [0, 1]
get the Logistic Map:

Tpi1 = rTn(l —x,)

Parameter (height): r € |0, 4]

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

Classification of Possible Behaviors

Dimension

Attractor

Fixed point

Fixed point, Limit cycle

Fixed Point, Limit Cycle,
Torus, Chaotic

Above + Hyperchaos

o | W (DN

Above + ?

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield




Example Dynamical Systems ...

Lorenz: & = o(y— x) o,r,b >0
= rr—1Y— T2
z = xy— bz
Rossler: © = —y—=z
= T +ay
z = b+ z(x—c)
Cusp Map: zn €10,1] a>0,0<b< 1
b
Zni1 = a(l — |1 —22z,|")
Logistic map:

Tpi1 =1rxy(l —x,) r, €[0,1 r € |0,4]

Play with these!

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



The Big Picture

Global view of the state space structures:
The attractor-basin portrait

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



The Learning Channel

You Are Here

...001011101000...

System Instrument Process Modeller

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



Example Dynamical Systems ...

Reading for next lecture:

NDAC, Chapter 3.

Lecture 3: Natural Computation & Self-Organization, Physics 256A (Winter); Jim Crutchfield



