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Phenomenology of Polytypism

• Definition:  Polytypism is the phenomenon of a substance that can assume two 
or more layer-like structures each having the same stoichiometry but differing 
in the manner of the stacking of layers. (Called Modular Layers)

• One-Dimensional:  The intra-layer bonding is much sronger than the inter-layer 
bonding, creating effectively one-dimensional materials.

• Wide Spread:  Occurs in SiC, ZnS, CdI2; micas such as muscovite and 
mangarite; III-VI compounds like GaS, GaSe and InSe; metals and alloys like Co, 
Li and ZrCr2; oxides like Ba5Nb4O15 and BaRuO3; sulfides like BaTaS3.

• Variety of Materials:  Many have widely varying properties: metals & insulators, 
covalent & ionic bonding.

• Plethora of Structures:  In some compounds, there can be 100’s of different 
crystalline structures.

• Long Range Order:  Some of these structures can exist over 100 modular 
layers.

• Disordered:  Many of these structures have considerable planar disorder. 
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Stacking Faults in SiC

“TEM image of stacking faults present in pyrolyzed–oxidized sample of SiC.” From
Shivani B. Mishra,  Ajay K. Mishra, Bhekie B. Mamba & Michael J. Witcomb,

Materials Letters 65 (2011) 2245–2247
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Previous Descriptions of Planar Disorder

• Jagodzinski's Disorder Theory (Jagodzinski, 1949)

• The Fault Model (Sebastian & Krishna, 1980 and 
many others)

• Reverse Monte Carlo (McGreevy & Pusztai, 1988)

4Wednesday, May 22, 13



Lecture 36: Natural Computation & Self-Organization, Physics 256B (Spring 2013); Jim Crutchfield 

Close-Packed Structures
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Hexagonal Close-Packed Structures (2H)

Hexagonal Close-Packed Structure
as seen from above

Hexagonal Close-Packed Structure
as seen from the side
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Cubic Close-Packed Structure
as seen from above

Cubic Close-Packed Structure
as seen from the side

Cubic Close-Packed Structures (3C)
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The Structure of Zinc Sulphide

• Consider the ‘basic unit’ to be a zinc-sulphur pair stacked vertically.  (A 
green-brown pair in the figure to the left.)

• Then, Modular Layers are formed from a hexagonal net of these units.

• It turns out that there are only three possible orientations any modular 
layer can occupy.  Call them A, B, and C. 

• A sample is specified by giving the  sequence of modular layers.

• The stacking constraints can be expressed as no two adjacent layers 
can have the same orientation.

• We can take advantage of this by using an alternate labeling scheme:

A ➙ B ➙ C ➙ A  :   ‘1’

A ➙ C ➙ B ➙ A  :   ‘0’

• So the sequence to left (reading from bottom to top) would be 
ABABCA which could be written in as 10111. 

Thus, a crystal is completely specified by a sequence of 1’s and 0’s
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3C+: ...ABCABCABCABC... or ...11111111111... or (1)*

3C-: ....ACBACBACBACB... or ...00000000000... or  (0)*

2H: .....ABABABABABAB... or ...10101010101... or  (01)*

4H: .....ABCBABCBABCB... or ...11001100110... or  (1100)*

6H1: ...ABCACBABCACB... or ...11100011100... or  (111000)*

6H2: ...ABCBABABCBAB... or ...110010110010... or (110010)*

9R+: ...ACABABCBCACA... or ...01101101101... or  (011)*

9R-: ....ABACACBCBABA... or ...10010010010... or  (100)*

Some Common Stacking Structures in CPSs

Notice that the period in the two notations need not be the same!

(Not shown)

(Not shown)
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Stacking Faults in ZnS

“Figure 9a illustrates the stacking fault existed in a single nanobelt, which 
is parallel to the axis and runs through out the nanobelt. Figure 9b shows 
two types of structure zone existed in a leg of tetrapod ZnS. One consists 
of the wurtzite structure (hcp, hexagonal close-packed) in zone a and the 
other is sphalerite structure (fcc, face centered cubic) in zone b, and the 
two different structures were formed by changing the stacking sequence of 
the closed-packed planes of the ZnS crystal and resulted from the 
crystallogenesis of ZnS. It should be noted that some properties, such as 
the photoluminescence, gas sensing property of obtained products are 
closely related to the intrinsic defects in crystals (Jiang et al., 2003).”

From:	  Large-‐Scale	  Synthesis	  of	  
Semiconductor	  Nanowires	  by	  Thermal	  
Plasma,	  Peng	  Hu,	  Fangli	  Yuan	  and	  Yajun	  
Tian.	  (2011).	  DOI:	  10.5772/19606
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Polytypes in Bulk Zn1-xMgxSe crystals

“HRTEM images of plate B5: (a) 2H domain with a defect consisting of additional planes with cubic stacking 
indicated by the dashed lines. On the right side of the picture the stacking sequence is explained. (b) Direct 
8H/4H interface; a stacking fault in 8H domain is indicated by the vertical arrow, (c) An 8H/4H interface; at the 
interface, a strip built of 17 planes stacked according to the 3C structure is observed.” From: W Paszkowicz, P 
Dluewski and ZM Spolnik and F Firszt and H Meczynska (1999) Journal of Alloys and Compounds 286, pp. 
224-235.
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Experimental Details

Schematic of a Four-Circle 
Diffractometer

Experiment measures the intensity I scattered into an angle θ. 
Sometimes, though, the intensity is reported as a function of the 
component of the reciprocal lattice vector perpendicular to the 
modular layers (l). Without going through the kinematics, it is 
sufficient to know that l indexes the angle θ. Thus, instead of I(θ) 
we often have I(l). 
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Four Circle Diffractometer

From:  http://en.wikipedia.org/wiki/File:Kappa_goniometer_animation.ogg 
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Four Circle Diffractometer

From:  http://en.wikipedia.org/wiki/File:Kappa_goniometer_animation.ogg 
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Diffraction Spectra from Close-Packed Structures

Thus, the correlation functions can found by Fourier Analysis of the Diffraction Spectrum

• I(l) is the diffracted intensity along the direction perpendicular to the stacking,
• l indexes the magnitude of the perpendicular component of the diffracted wave,
• ψ2(l) accounts for scattering factors,

• N is the number of modular layers,

• Qc(n) and Qa(n) are the Correlation Functions, i.e., the probability any two modular
  layers at separation cyclically or anti-cyclically related.  Qs(n) is probability that two layers at                     
separation n have the same orientation.  Note that Qc(n) + Qa(n) + Qs(n) = 1.
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Figures-of-Merit for Diffraction Spectra

Qc(1) + Qa(1) = 1

X(1) = �1/2

� =
�

I(l) cos(2⇥l) dl

Pr(00) + 2 Pr(01) + Pr(11) = 1

Pr(01) = Pr(1)� Pr(11)

Pr(00) + 2 Pr(1)� Pr(11) = 1

2Qc(1) + Qc(2)�Qa(2) = 1

� = 2Qc(1) + Qc(2)�Qa(2)

It can be shown that the diffraction spectrum must obey two equalities when 
integrated over a unit interval in l.  We can use this to evaluate the quality of data 
over candidate unit intervals.  

� =
�

I(l) cos(2⇥l) dl = �1/2

� = 2Qc(1) + Qc(2)�Qa(2) = 1

Quick Derivations:

� = �1/2
� = 1
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Some Diffraction Spectra for Periodic CPSs

3C+ 2H

4H 6H1

(1)* (01)*

(1100)* (111000)*
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Qc(2) = Pr(0000) + Pr(0001) + Pr(0010) + Pr(0011) ,

Qr(2) = Pr(1100) + Pr(1101) + Pr(1110) + Pr(1111) ,

Qc(3) = Pr(0110) + Pr(0111) + Pr(1010) + Pr(1011)
+Pr(1100) + Pr(1101) ,

Qr(3) = Pr(0010) + Pr(0011) + Pr(0100) + Pr(0101)
+Pr(1000) + Pr(1001) ,

Qc(4) = Pr(1111) + Pr(1000) + Pr(0100) + Pr(0010)
+Pr(0001) ,

Qr(4) = Pr(0000) + Pr(0111) + Pr(1011) + Pr(1101)
+Pr(1110) ,

Qc(5) =
Pr2(0000)

Pr(0000) + Pr(0001)
+

Pr(0011) Pr(0111)
Pr(0111) + Pr(0110)

+
Pr(0101) Pr(1011)

Pr(1011) + Pr(1010)
+

Pr(0110) Pr(1101)
Pr(1101) + Pr(1100)

+
Pr(0111) Pr(1110)

Pr(1110) + Pr(1111)
+

Pr(1001) Pr(0011)
Pr(0011) + Pr(0010)

+
Pr(1010)Pr(0101)

Pr(0101) + Pr(0100)
+

Pr(1011) Pr(0110)
Pr(110) + Pr(0111)

+
Pr(1100) Pr(1001)

Pr(1001) + Pr(1000)
+

Pr(1101) Pr(1010)
Pr(1010) + Pr(1011)

+
Pr(1110)Pr(1100)

Pr(1100) + Pr(1101)
,

Qr(5) =
Pr2(1111)

Pr(1111) + Pr(1110)
+

Pr(1100) Pr(1000)
Pr(1000) + Pr(1001)

+
Pr(1010) Pr(0100)

Pr(0100) + Pr(0101)
+

Pr(1001) Pr(0010)
Pr(0010) + Pr(0011)

+
Pr(1000) Pr(0001)

Pr(0001) + Pr(0000)
+

Pr(0110) Pr(1100)
Pr(1100) + Pr(1101)

+
Pr(0101)Pr(1010)

Pr(1010) + Pr(1011)
+

Pr(0100) Pr(1001)
Pr(1001) + Pr(1000)

+
Pr(0011) Pr(0110)

Pr(0110) + Pr(0111)
+

Pr(0010) Pr(0101)
Pr(0101) + Pr(0100)

+
Pr(0001)Pr(0011)

Pr(0011) + Pr(0010)

Pr(0111) = Pr(1110) ,

Pr(0001) = Pr(1000) ,

Pr(0011) + Pr(1011) = Pr(0111) + Pr(0110) ,

Pr(0101) + Pr(1101) = Pr(1011) + Pr(1010) ,

Pr(0010) + Pr(1010) = Pr(0101) + Pr(0100) ,

Pr(0001) + Pr(1001) = Pr(0011) + Pr(0010) ,

Pr(0100) + Pr(1100) = Pr(1001) + Pr(1000) .

Pr(0000) + Pr(0001) + Pr(0010) + Pr(0011) + Pr(0100) Pr(0101) + Pr(0110) + Pr(0111) + Pr(1000) + Pr(1001)
Pr(1010) + Pr(1011) + Pr(1100) + Pr(1101) + Pr(1110) Pr(1111) = 1

The r = 3 Spectral Equations for CPSs

All of the equations
are linear except for

the last two.  We solve
them for sequence 

probabilities 
Pr(s1s2s3s4) given 
the correlation

functions.
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The εMSR Algorithm1

Experimental 
Diffraction Pattern

Experimental 
Correlation Functions

Solve the Spectral 
Eqs for P(ωr)

Construct the 
candidate ε-M

Calculate Theoretical 
Correlation Functions

Calculate Theoretical 
Diffraction Pattern

Compare Experimental and 
Theory Diffraction Patterns

Quit

Bad Agreement:  r → r + 1

Good 
Agreement

1DP Varn, GS Canright, & JP Crutchfield, "ε-Machine spectral reconstruction theory: A direct method for inferring planar disorder and 
structure from X-ray diffraction studies,"  Submitted to: Acta Crystallographica A.
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| 1
-p

3
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0 | 1-p1
S1

(Pr(    ))S1

1 | p2

0 | 1-p2

S2
(Pr(    ))S2

The Most General r = 3 ε-Machine 

The most general r=3 ε-machine. We show only the recurrent portion of the ε-machine as the 
transient part is not physically relevant.  The causal states are labeled by the last three spins seen, 
i.e, S5 means that 101 were the last three spins seen.  The edge label s|p indicates a transition on 
spin s with probability p.  By ‘most general’ we mean that all pasts at r=3 are distinguished, and all 
possible transitions between causal states exist.  This is a 3rd order Markov Process.
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Definition:  Causal State Cycles

Causal State Cycle:  A non-self intersecting, closed, symbol-
specific path on an ε-machine. 
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3C+ & 3C- Crystal Structure on an r = 3 ε-Machine 
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The causal state cycles that correspond to the 3C structure on 
an r=3 ε-machine.  Recall,  3C+ is just ...1111111...,  and 3C- is 
just ...0000000....

3C+

(...11111...)
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The causal state cycle that correspond to the 2H structure on an 
r=3 ε-machine.  Recall,  2H is just ...1010101....

2H Crystal Structure on an r = 3 ε-Machine 
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(...010101...)

2H
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4H Crystal Structure on an r = 3 ε-Machine 
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The causal state cycle that correspond to the 4H structure on an 
r=3 ε-machine.  Recall,  4H is just ...11001100....

4H

(...00110011...)
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6H Crystal Structure on an r = 3 ε-Machine
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The causal state cycle that correspond to the 6H structure on 
an r=3 ε-machine.  Recall,  6H is just ...111000111000....

6H1

(...000111000111...)
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Completely Random Stacking of Layers
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Diffraction Pattern for a RNG

For contrast, here is the diffraction spectrum for a completely random 
stacking structure. The spectrum is entirely diffuse.
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Causal State Cycles on an r = 3 ε-Machine 
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Causal State Cycles:  A non-self intersecting, closed, symbol specific path on an ε-machine.   They 
can lead to crystal structures:  3C (green), 2H (blue), 6H (red), and 4H (cyan).   These are four of 
the possible 19 causal state cycles on an r=3 ε-machine.  They can also lead to faulting 
structures, as seen on the next slide.
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Faulting Structures for 3C
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Layer Displacement Fault
Growth Fault: The stacking rule is broken for a layer,
such that the next layer added isn’t different from the
previous two. This leads to twinned crystal: 

...000000000... ➔ ...0000|1111...

Deformation Fault: A spin is flipped. This can’t lead to 
a twinned crystal: 

...11111111... ➔ ...11101111...

Layer Displacement Fault: Two adjacent layers switch 
orientation. This is equivalent to flipping three adjacent 
spins. This can’t lead to a twinned crystal: 

...111111111... ➔ ...1100011111...
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Faulting Structures for 2H
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Layer Displacement Fault

Growth Fault: Insertion of spin: ...101010... ➔ ...1010010...

Deformation Fault: Flip a spin: ...010101... ➔ ...011101...

Layer Displacement Fault: Exchange adjacent spins: 
...010101... ➔ ...011001...
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Polytypism in Zinc Sulphide

• Discovered by Frondel and Palache in 1948.

• Over 185 observed crystalline structures that can be formed and co-
exist under virtually identical thermodynamic conditions. 

• Longest period observed is 114 modular layers.

• Many disordered structures exist.

• Found in both mineral and synthetic ZnS crystals.

• Only two stable structures in ZnS are thought to exist:  The 
hexagonal close-packed (HCP,  aka 2H and wurtzite) above 1024 C, 
and the face-centered cubic (FCC,  aka cubic close-packed, 3C and 
zinc-blende) below 1024 C.  All others are believed to be meta-
stable.

• ZnS can undergo solid-state transformations upon annealing.
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Experimental Spectrum SK134

The experimental spectrum for zinc sulphide.  This spectrum should be periodic in l 
with period one but clearly it is not.  This illustrates the need to choose a unit interval 
in l that is relatively error free.
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Experimental Spectrum SK134

The experimental spectrum for zinc sulphide.  
This spectrum should be periodic in l with 
period one but clearly it is not.  This illustrates 
the need to choose a unit interval in l that is 
relatively error free.

The figures-of-merit calculated over various 
intervals l0  to l0 +1.  We see that near l0 = 0, 
the figures-of-merit are roughly near their 
theoretical values.
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Experimental Spectrum SK134 (    )
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The r = 3 Reconstructed ε-Machine for SK134 
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Experimental Spectrum SK134
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Experimental Spectrum SK134
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Experimental Spectrum SK134
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Structure ε-M FM

2H 64% 83%

3C 8% 0%

Deformation 16% 17%

Growth 6% 0%

Layer - Displacement 6% 0%
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Experimental Spectrum SK135 (    )
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Experimental Spectrum SK135
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Experimental Spectrum SK135
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Experimental Spectrum SK135
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No sensible fault model analysis
is possible here. 
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Computational, Informational, and Physical 
Quantities

System P rl hμ(bits/ML) Cμ(bits) E (meV) α

2H 2 1 0 1.0 1.95 1.00

3C 1 0 0 0.0 -1.79 0.00

6H 6 3 0 2.6 -0.65 0.33

SK134 4.8 3 0.50 2.3 1.13 0.80

SK135 5.6 3 0.59 2.5 -1.02 0.24

Computational, informational, and physical quantities calculated for 
the two samples, as well as the three crystalline structures we 
considered. E is configurational energy per Zn-S pair associated with 
the stacking. α is the hexagonality of each sample. (The hexagonality 
is defined as that fraction of modular layers which are
hexagonally related to their neighbors.)

41Wednesday, May 22, 13



Lecture 36: Natural Computation & Self-Organization, Physics 256B (Spring 2013); Jim Crutchfield 

Advantages over Other Methods
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So, Summing Up:

• εMSR provides the most general description possible of disorder in one 
dimension.

• No assumption about the crystal structure or fault structure need be made.

• Any kind or amount of planar disorder can be be treated.

• There may be more than one crystal structure present.

• Treats fault and crystal structure on an equal footing. 

• All the information in the spectrum---both Bragg like and and diffuse 
scattering---is used to generate the model. 

• Parameters of physical interest are amenable to calculation from the ε-machine.  

• εMSR can evaluate the quality of experimental data before beginning 
reconstruction.
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Open Research Questions
1. Impose symmetry conditions on the sequence probabilities, and develop symmetric ε-                 
machine spectral reconstruction theory (SεMSR).
2. Extend εMSR and SεMSR to the r = 4 case.
3. Use Reverse Monte Carlo Modeling to find sample, disordered crystals, and then use 
standard reconstruction techniques to find the ε-machine.
4. Simulate layer displacement faulting to model the 2H to 3C transformation, and both 
deformation and layer displacement faulting to simulate the 3C to 2H transformation.  
5. Examine other close-packed structures, like SiC or perhaps graphene.  Or more 
complicated polytypes for that matter.
6. Consider the implications of various kinds of disorder on various phenomena in  
condensed matter systems, such as Anderson Localization.
7. Consider the interpretations/applications of new computational measures in the 
polytype setting.
8. Suppose that one had some phase information, how could one incorporate that into the 
Spectral Equations?  
9. It is claimed that from the analysis of peak profiles one can extract correlation 
information--Qs(n)--from powder diffraction data, assuming spin inversion symmetry.  
When one combines this with SεMSR, how good is the reconstructed ε-machine?
10. Explore how εMSR handles noisy diffraction spectra.
11.  Two Dimensions,  Anyone?
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