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While the dynamics were hidden before 
and we could only observe the output 
sequences of 0s and 1s, now the signal 
is processed so we can’t even observe 
that.  We can can only see the Power 

Spectrum of the sequence.
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Power Spectra of Discrete Series*

SN = s0, s1, . . . , sn, . . . , sN�1 sn � {0, 1}

Define the Discrete Fourier Transform as:

F(SN ) = S(f) =
1⇥
N

N�1�

m=0

e�2�imfsm

The Power Spectrum is defined as:

P(f) = |S(f)|2

For purposes of computation, let’s assign the numerical value of ‘1’ to symbol ‘1’, 
and the numerical value ‘-1’ to symbol ‘0’.  This choice is not unique. 

*There is a much more elegant method of finding correlation functions and power spectra than 
demonstrated here.  PM Riechers & JP Crutchfield have recently shown that the z-transformation 
can do much of this analytically, or if done numerically, much more efficiently.  
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The Correlation Function

Let’s substitute the expression for the Fourier Transform into the for Power Spectrum:

P(f) =
1
N

N�1�

m=0

N�1�

m�=0

e�2�if(m�m�)smsm�

Now let n = m - m’

P(f) = 1 +
2
N

N�1�

n=1

N�n�1�

m�=0

cos(2�nf)sm�sm�+n

Define the two-point correlation function as

C(n) ⇥ ⌅sm�sm�+n⇧ =
1

N � n

N�n�1�

m�=0

sm�sm�+n
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P(f) = 1 +
2
N

N�1�

n=1

(N � n)C(n) cos(2�nf)

This expression relating the power spectrum and the correlation function suggests that 
the latter can be found from Fourier analysis of the former, i.e.,

C(n) =
� 1

0
P(f) cos(2�nf) df

This is a rather general result.  

It is more convenient to work with the correlation functions in a slightly different form:

q(n) =
1
2
[C(n) + 1]

q(n) is the probability that two symbols at distance n are identical. 
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A Classification Scheme for Power Spectra

Power Spectra can classified according to their scaling behavior with the length of the 
sequence.

P(f) � N2

P(f) � N

P(f) � N� 1 < � < 2

i. Pure Point

ii. Continuous

iii. Singular Continuous

This scheme is rather basic, and certainly doesn’t exhaust all the possibilities. 
For instance, the power spectrum could scale like NlogN. 
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Examples of Power Spectra: Unbiased Coin Toss

For a completely random sequence, both the correlation function and the power spectrum are 
featureless.
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Examples of Power Spectra: Period 1

9Tuesday, May 21, 13



Lecture 35: Natural Computation & Self-Organization, Physics 256B (Spring 2013); Jim Crutchfield

Examples of Power Spectra: Period 2
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Examples of Power Spectra: Golden Mean
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Examples of Power Spectra: Even System
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Examples of Power Spectra: Morse-Thue

We have the mapping: {0, 1} ➔ {01, 10}
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Review

• Power spectra are naturally related to a two-point correlation function of the 
original sequence. (Wiener-Kninchin theorem)
• Thus, power spectra are insensitive to higher-order correlations.
• This is because finding the magnitude of the Fourier Transform throws away 
phase information. 
• Power Spectra can be classified by their scaling behavior with the sequence 
size.
• They come in three types: pure point, continuous, singular continuous. A 
spectrum may have combinations of these three.
• Looking at the power spectrum can tell much about the statistics of the 
sequence.

Question:

Is it possible to infer the statistics of the sequence from knowledge of the power 
spectrum alone? 
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ε-Machine Spectral Reconstruction (εMSR)

In the standard approach to pattern discovery of a sequence, one finds the 
frequency of all subsequences (words) of length r and builds a parse tree. 
Histories with equivalent futures are merged to form the causal states. Since, we 
can find the two point correlation function from the power spectrum, perhaps we 
can relate these to estimate sequence probabilities.

This is what ε-machine spectral reconstruction (εMSR) does.

We begin by noting that there are constraints among the sequence probabilities: 

Pr(u) = Pr(0u) + Pr(1u) = Pr(u0) + Pr(u1)

Additionally, we require that sum of the probability of finding sequences of a 
given length be unity (normalization):

�

��Ar+1

Pr(�) = 1
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We refer to these equations as Spectral Equations at a given r. 

q(n) =
�

s=0,1

�

�r

Pr(s�rs)

q� = (Pr(0))2 + (Pr(1))2

Finally, we relate correlation functions to sequence probabilities. 

For many spectra, the correlation functions approach an asymptotic value, and this can 
related to the probability of finding a 1 or 0 in the sequence by:

for n > 1, and where ωr is the subset of all sequences of length n-1.
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The r=1 Equations:

q� = (Pr(00) + Pr(01))2 + (Pr(10) + Pr(11))2

Pr(0) = Pr(00) + Pr(10) = Pr(01) + Pr(00)

Pr(11) + Pr(10) + Pr(01) + Pr(00) = 1

q(1) = Pr(11) + Pr(00)

We have four equations and four unknowns. We can solve!
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The r=2 Equations:

Pr(001)� Pr(100) = 0 Pr(011)� Pr(110) = 0

Pr(001) + Pr(101)� Pr(011)� Pr(010) = 0

Pr(111) + Pr(101) + Pr(011) + Pr(001) + Pr(110) + Pr(100) + Pr(010) + Pr(000) = 1

q(1) = Pr(111) + Pr(110) + Pr(000) + Pr(001)

q(2) = Pr(111) + Pr(101) + Pr(000) + Pr(010)

q� = (Pr(000) + Pr(001) + Pr(010) + Pr(011))2 +
(Pr(100) + Pr(101) + Pr(110) + Pr(111))2,

Eight unknowns, only seven equations!
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Where can we get an additional constraint?

Let’s use correlation function q(3) and write this in terms of sequences of length three.

q(3) = Pr(1111) + Pr(1101) + Pr(1011) + Pr(1001) + Pr(0110) + Pr(0010) + Pr(0100) + Pr(0000)

q(3) =
Pr2(111)

Pr(111) + Pr(110)
+

Pr(110) Pr(101)
Pr(100) + p(101)

+

Pr(101) Pr(011)
Pr(010) + Pr(011)

+
Pr(100) Pr(001)

Pr(000) + Pr(001)
+

Pr2(000)
Pr(000) + Pr(001)

+
Pr(001) Pr(010)

Pr(010) + Pr(011)
+

Pr(010) Pr(100)
Pr(100) + Pr(101)

+
Pr(011) Pr(110)

Pr(111) + Pr(110)

Where we have used relations of the form

Pr(s0s1s2s3) = Pr(s0s1s2) Pr(s3|s0s1s2) � Pr(s0s1s2) Pr(s3|s1s2) =
Pr(s0s1s2) Pr(s1s2s3)
Pr(s1s20) + Pr(s1s21)

We refer to this latter approximation as memory length reduction.
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We can then write out the εMSR algorithm as follows:
• Find the Correlation Functions from the Power Spectrum. 
• Write out and solve the Spectral Equations and for sequences of a given r.
• We label candidate States by their length r histories.
• We estimate the transition probabilities between states from the sequence 
probabilities.
• We merge States with equivalent futures to form Causal States. This gives us a 
candidate ε-machine.
• We generate correlation functions and the power spectrum from the candidate ε-
machine.
• We compare this with the original correlation functions and power spectrum.
• If there is insufficient agreement, we increment r and repeat the last six steps. 

Since we have applied memory length reduction, this effectively limits the the 
kinds of processes we can find to those of block Markovian of length r. That is, we 
can label all possible states by their length r histories.  
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Limitations to ε-Machine Spectral 

Reconstruction Theory

As r increases, we are forced to go to correlation functions of higher and higher n to 
obtain a complete set of equations. This puts a limitation on how large r can be.

r nmax # Eqs # Terms

2 3 8 8

3 7 16 128

4 15 32 32,768

5 31 64 ~109
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Examples of εMSR Worked in Class

• The Random Process
• The Golden Mean Process
• The Even Process
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Example A: εMSR for the Random Process

To within numerical error, εMSR reproduces the
Random Process
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Example B: εMSR for the Golden Mean Process

To within numerical error, εMSR reproduces the
Golden Mean Process
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Example C: εMSR for the Even Process, r = 1
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Example C: εMSR for the Even Process, r = 2
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