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Overview

o TOday
o Inferring structure (model topology)

o Enumeration and model comparison for topological
e-machines

o EX 3: Infer structure of EvenOdd process
o EX 4: Survey of inferring Golden Mean, Even, Simple
Nonunifilar Source (SNS)

o Complications: out-of-class, non-stationary processes

o Previous Lecture

o Goals of statistical inference
o Introduction to Bayesian inference

o Ex 1: Biased Coin

o Unifilar HMMs and e-machines
o Ex 2: EvenOdd Process

o Infer transition probabilities and start state
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Review from last time

Bayes' Theorem: Update Prior Distribution to Posterior Distribution

o We inferred transition probabillities 6; given data D and
assumed model structure M,

D\0;,0;0, M;) P(0;|04.0, M;)
IP)(D|(77;,(), MZ)

P
P(0;|D, 05,0, M;) = (
o Also, we inferred the start state (or, hidden state path)

D|o; 0, M;) P(0;0|M;)
P(D|M;)

o Both of these inferences were made using fixed model
topology M;

P
IP)(O'Z',()|D, Mz) — (
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Review from last time

Bayes' Theorem: Update Prior Distribution to Posterior Distribution

o We inferred transition probabillities 6; given data D and
assumed model structure M,

N~ P(D|0;, 040, M;) P(0;|04.0, M;)
OP)(92|D70-Z,O7MZ)J: P(D|O’0 M)

o Also, we inferred the start state (or, hidden state path)

N P(Dloj 0, M;) P(0i 0| M;)
(PloiolD, Mi)j= P(D|M,)

o Both of these inferences were made using fixed model
topology M;
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Inferring Structure




A Step Back. ..

o How is this related to other inference algorithms for HMMs?

o Properties of other approaches (very generally)

o Usually infer parameters for fixed (assumed) HMM topology
o Iypically consider nonunifiliar topologies
o Algorithms: expectation-maximization, Baum-Welch, etc.

o What we do differently

o Restrict to unifilar HMM topologies

o Use model comparison to infer model topology
o Provide a distribution over candidate models

o A different view of structural inference?

o What set of models M should we use?
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Topological e-machines

A set of candidate structures

o Algorithm to efficiently enumerate all topological
e-machines with specified alphabet and number of states

o B. Johnson et al., Enumerating Finitary Processes
http://arxiv.org/abs/1011.0036

o Use this algorithm to create our set of candidate model
structures M

o A brute-force method to infer structure

o Iry all structures within time/computational limits
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Finite-state, edge-labeled HMMs

Definition
A finite-state, edge-labeled, hidden Markov model (HMM)
consists of:

1. A finite set of hidden states S = {o1,...,0,}

2. A finite output alphabet X

3. A setof N x N symbol-labeled transition matrices T*),
r € X, where 1}(3?’) Is the probability of transitioning from
state o; to state 703- on symbol x. The corresponding overall

state-to-state transition matrix is denoted T = 5" __, T'®).
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Finite-state e-machine

Definition
A finite-state e-machine is a finite-state, edge-labeled, hidden
Markov model with the following properties:
1. Unifilarity: For each state o; € S and each symbol x € X
there is at most one outgoing edge from state o; that

outputs symbol x.
2. Probabilistically distinct states: For each pair of distinct

states o, 0; € S there exists some finite word
w = xoT1...2r_1 Such that:

P(w|og = o) # P(w|og = o)

Lecture 34: Natural Computation & Self-Organization, Physics 256B (Spring 2013); Jim Crutchfield Slide 8

Wednesday, May 15, 13



Topological e-machines

Definition

A topological e-machine is a finite-state e-machine where the
transition probabilities for each state are equal for all outgoing
edges.

Okay Nope

1
i 511
—_— B 1 —_— B 1
PCO—@ »CO=—=ODx
1/1 21
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Topological e-machines

How many are there?

States,n  Edges, k
1

Number of
o full alphabet

o binary

o topological
e-machines
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History vs Generator e-machines

How to think about this approach to structural inference

o You have studied the history formulation for e-machines
using the equivalence relation

o A process determined the e-machine structure through the
equivalence relation

o An alternative is the generator formulation developed by
Travers and Crutchfield*

o An e-machine defines the process that can be produced by
the given structure
o Formulations recently proved to be equivalent

*Travers & Crutchfield, Exact synchronization for finite-state sources (2011);
Asymptotic synchronization for finite-state sources (2011); Equivalence of history and

generator e-machines (2011).
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Inferring Structure

Model Comparison for Topology: Update Prior to Posterior

o Choose a set of candidate models M

o Bayes’ Theorem at the level of structure, or model topology

P(D|M;, M) P(M;|M)
P(D|M)

P(M;|D, M) =

where

P(DIM) = Y P(D|M;, M)P(M;|M)
M;eM

o As before, we have to specify a prior at this level

o We also use P(D|M;, M) = P(D|M,)
o P(D|M;) came from inferring start state
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Inferring Structure

Model Comparison for Topology: Update Prior to Posterior

o Choose a set of candidate models M
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@P)(Mj“:)v M)j:
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Prior for Model Topologies

Inferring Structure

o We choose a simple, single parameter, prior over model
topologies

POM|M) exp (—8 f(M;))

N ZMjeM exp (=0 f(M;))

o The function is chosen to penalize for larger structure

o Number of states in HMM- this is the CMPy default
o Number of edges in HMM

o Other ideas?
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What do we do with the posterior at this level?
Sampling vs MAP

o Application of Bayes’ theorem provides the posterior
distribution over models in M

P(M;|D,M) , » P(M;|D,M)=1

MjGM

o Use 1: Sample from posterior over models
o Quantify uncertainty in structure
o Can also quantify uncertainty in start state and transition
probabilities as seen previously
o Estimate mean and credible interval for any function of
interest: n,, C,, etc.

o Use 2: Choose a single maximum a posteriori (MAP)
structure

Mpap = argmax P(M;|D, M)
MjEM
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Sampling Algorithms

Whole posterior vs MAP

ALGORITHM 1: Sample using all topologies in M

for n in (1, N,) do:

M; ~ P(M;|D, M) # sample topology
gio ~ P(o;o/D,M;) #sample start state
0; ~ P(0;|D,0;0,M;) #sample parameters
fn = f(ip(zloi)})  # store sample

ALGORITHM 2: Sample using MAP topology

Myap = argmax ;. c aq P(M;|D, M) # find MAP topology
for nin (1, N,) do:

0i0 ~ P(oio|D, Mmap)  # sample start state

0; ~P(0;|D, 050, Mmap) # sample parameters

fn = f{p(x|o;)}) # store sample
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Ex 3: Inferring the Structure of
EvenOdd Process




EvenOdd Process
Use CMPy to generate data

import cmpy
eo_str = """A B O 0.1; A C 1 0.9;B A 0 1.0;
cpBoOoOO0.3;cD1O0.7;,DC11.0"""
eomachine = cmpy.machines.from _string(eo_str,name="biased EvenOdd’,
style=1)
# draw machine
eomachine.draw (filename=’ figures/evenodd.pdf’, show=False)
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Prior over all 1- to 4-state topological e-machines
Instantiate in CMPy

# import inference code
import cmpy.lnference.bayesianem as bayesem

# get set of 1- to 4-state topological epsilon machines
modelsetl = bayesem.LibraryGenerator (2, [1,2,3,4])

# declare prior over models
prior = bayesem.ModelComparisonEM (modelsetl, beta=4., verbose=True)

xInfer Machine Topology (InferEM)
x* Model Prior— beta: 4.00000
* Inferring all machines...
*x 1474 machines considered, 1474 possible
x* Calculating log evidence for all machines...
x* Calculating model probabilities for all machines...
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Prior
Most probable topology (a priori)

o Get MAP topology and use prior mean for transition
probabilities
o Average over uncertainty in start state

# get machine from prior
pr, e€o_prior_em = prior.get_MAP_PM machine () [O]

# draw machine
eo_prior_em.draw(filename=’ figures/eo_prior_mach.pdf’,
show=False)

2> 0.50 1) 0.500
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Posterior given data from EvenOdd Process
Instantiate in CMPy

# generate data
eo_data = eomachine.symbols (5000)

# get set of 1- to 4-state topological epsilon machines

modelset?2 = bayesem.LibraryGenerator (2, [1,2,3,4])

# declare posterior over models

posterior = bayesem.ModelComparisonkEM (modelset?2, eo_data, beta=4.,
verbose=True)

xInfer Machine Topology (InferEM)
* Model Prior— beta: 4.00000
x* Inferring all machines...
x*x 1474 machines considered, 175 possible
* Calculating log evidence for all machines...
x* Calculating model probabilities for all machines...

Wednesday, May 15, 13



Posterior
MAP topology

o Get MAP topology and use posterior mean for transition
probabilities

o Average over uncertainty in start state (if any)

# get machine from posterior
pr, eo_post_em = posterior.get_MAP_PM machine () [0]

# draw machine
eo_post_em.draw (filename=' figures/eo_posterior_mach.pdf’,
show=False)
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Posterior
MAP topology

Inferred Topology

True Topology
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Prior, Posterior and C,, h,

Sample from prior & posterior

num_samples = 200
eo_prior_hmu = []

; eo_prior_Cmu = [];
eo_posterior_hmu =

[]1; eo_posterior_Cmu = [];

# generate and store samples
for n 1n range (num_samples) :
# prior
(node,machine) = prior.generate_sample ()
hmu = machine.entropy_rate ()
Cmu = machine.statistical_complexity ()
eo_prior_hmu.append (hmu),; eo_prior_Cmu.append (Cmu)

# posterior

(node, machine) = posterior.generate_sample ()

hmu = machine.entropy_rate ()

Cmu = machine.statistical_complexity ()
eo_posterior_hmu.append (hmu); eo_posterior_Cmu.append (Cmu)
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Prior vs Posterior, 7,

Plot h,, samples

import pylab as plt
# prior hmu —-- Dblue
n, bins, patches = plt.hist(eo_prior_hmu, 50, range=[0.0,1.0],

normed=1, facecolor="blue’, alpha=0.75,

cumulative=False)

# posterior hmu —-- green

n, bins, patches plt.hist (eo_posterior_hmu, 50, range=[0.0,1.0],
normed=1, facecolor=’'green’, alpha=0.75,

cumulative=False)

.xlabel (r’"Sh_{\mu}$ [bits/symbol]’)

.title ('Entropy Rate Samples from prior (blue) posterior (green)’)

.grid (True)
.savefig(’ figures/eo_hmu_hist.pdf’)
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Prior vs Posterior, 7,

Plot h,, samples

Entropy Rate Samples from prior (blue) posterior (green)

0.4 0.6
h,, [bits/symbol]

true hmu: 0.438432153702 [bits/symbol]
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Prior vs Posterior, C,

Plot C,, samples

plt.clf ()

# prior Cmu —— blue

n, bins, patches = plt.hist(eo_prior_Cmu, 50, range=[0.0,2.0],
normed=1, facecolor="blue’, alpha=0.75,
cumulative=False)

# posterior Cmu ——- green

n, bins, patches plt.hist (eo_posterior_Cmu, 50, range=[0.0,2.0],
normed=1, facecolor="green’, alpha=0.75,
cumulative=False)

plt.xlabel (r’ $C_{\mu}$ [bits]’)

plt.title(’Statistical Complexity Samples from prior (blue) posterior
n)’)

plt.grid (True)

plt.savefig(’ figures/eo_Cmu_hist.pdf’)
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Prior vs Posterior, C,

Plot C,, samples

2i;i_:’tatistical Complexity Samples from prior (blue) posterior (green)

1.0
C, [bits]

true Cmu: 1.84152253296 [bits]
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Prior vs Posterior, C,, i,

Plot C,, and h, samples

# prior - blue

plt.clf ()

plt.scatter (eo_prior_hmu, eo_prior_Cmu, s=20,
facecolor="blue’, edgecolor='none’,alpha=0.25)

# posterior — green
plt.scatter (eo_posterior_hmu, eo_posterior_Cmu, s=20,
facecolor="green’, edgecolor="none’,alpha=0.75)

.yvlabel (r’ SC_{\mu}s$’)

.xlabel (r’Sh_{\mul}s’)

.title(r’SC_{\mu}$ vs $h_{\mu}$ prior(blue) posterior (green)’)
.grid (True)

.savefig(’ figures/eo_Cmuhmu.pdf’)
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Prior vs Posterior, C,, h,

Plot C,, and h, samples

C, vs h, prior(blue) posterior(green)

true Cmu: 1.8415225329¢06 [bits]
true hmu: 0.438432153702 [bits/symbol]
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Ex 4: Golden Mean, Even, SNS




Survey
Golden Mean, Even, SNS

o A single time series of length T' = 217 is generated

o Sub-strings of the time series are analyzed at lengths
L=2fori=0,1,2,...,17

o Notate these substrings as D.,

o Use 36 660 models that make up all 1- to 5-state binary,
topological e-machines

o Use 8 =4 In all examples
o Use 50000 samples for each L

o Consider how inference converges as L increases

o Look at h, and C), as proxies for models inferred
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Prior over models
Plot C, and h, samples: g = 0 (black), g8 = 2 (brown), 8 = 4 (blue)

log(1 +P(Cy,|M))
0.5 1 1.5
I I
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Golden Mean Process

10
1/1
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Posterior over models, GM data
C,., h, samples: L =1 (black), L = 64 (brown), L = 16 384 (blue)

log(1 +P(Cy|D.1,, M))
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Posterior over models, GM data

C, h, convergence
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Even Process

fe0=0
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Posterior over models, Even data
C,., h, samples: L =1 (black), L = 64 (brown), L = 16 384 (blue)

log(1 4+ P(Cy|D.1,, M))

O). ) @ d %()Q @
C ¢ )

e o%° o
000 N Mg o oo e
b @ ;@, C’T"‘e;( .

@
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Posterior over models, Even data

C, h, convergence

Wednesday, May 15, 13



Simple Nonunifilar Source
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Posterior over models, SNS data
C,., h, samples: L =1 (black), L = 64 (brown), L = 16 384 (blue)

log(1+P(C,|D.r, M))
1 2 3
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Posterior over models, SNS data

C, h, convergence
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Accepting Topologies

How many topologies accept data from GM, Even, SNS?

Accepting Topologies (x103)
Accepting Topologies (x103)

l l l l l l
1 22 24 26 28 210 212 214 216 1 22 24 26 28 210 212 214 216
Data Length L (GM Data) Data Length L (SNS Data)

o GM, SNS: 6225 of 36 660
accept data

o Even: 3813 of 36 660
accept data

Accepting Topologies (x103)

| |
2 24 26 28 210 212 214 216
Data Length L (Even Data)

|
1 2
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Complications
Things to think abouit. ..

o True model topology may not be in M

o We've seen analysis of SNS data— out-of-class
o We might also not have machines with enough states in our
set

o We assume stationary process— structure and transition
probabilities do not change with time/space

o Resulting inference might be unclear

o Many others issues
o Check the inferred model(s) as much as possible!
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Ex: Not enough states in M




Posterior given data from EvenOdd Process

Use all 1- to 3-state machines

# get set of 1- to 3—-state topological epsilon machines
modelset3 = bayesem.LibraryGenerator (2, [1,2,3])

# declare posterior over models
posterior2 = bayesem.ModelComparisonkEM (modelset3, eo_data,
verbose=True)

beta=4.,

x*xInfer Machine Topology (InferEM)
x* Model Prior— beta: 4.00000
* Inferring all machines...
x**x 86 machines considered, 10 possible
x* Calculating log evidence for all machines...
x* Calculating model probabilities for all machines...
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Posterior
MAP topology— out-of-class

o Get MAP topology and use posterior mean for transition
probabilities

o Average over uncertainty in start state (if any)

# get machine from posterior
pr, eo_post_em = posterior2.get_MAP_PM machine() [0]

# draw machine
eo_post_em.draw (filename=' figures/eo_posterior_mach?2.pdf’,
show=False)
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Posterior
MAP topology— out-of-class

Inferred Topology

True Topology
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Ex: Non-stationary Process




Make non-stationary: GM then Even

Create data first

# get machines
gm = cmpy.machines.GoldenMean ()
even = cmpy.machines.Even ()

# GM data first, Even Next
ns_data = gm.symbols (4000)
ns_data = ns_data + even.symbols (6000)
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Posterior given data from non-stationary source

Use all 1- to 3-state machines

# get set of 1- to 3—-state topological epsilon machines
modelsetd4 = bayesem.LibraryGenerator (2, [1,2,3])

# declare posterior over models
posterior3 = bayesem.ModelComparisonkEM (modelsetd4, ns_data,
verbose=True)

beta=4.,

x*xInfer Machine Topology (InferEM)
x* Model Prior— beta: 4.00000
* Inferring all machines...
**x 86 machines considered, 3 possible
x* Calculating log evidence for all machines...
x* Calculating model probabilities for all machines...
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Posterior

MAP topology— non-stationary source

o Get MAP topology and use posterior mean for transition
probabilities

o Average over uncertainty in start state (if any)

# get machine from posterior
pr, ns_post_em = posterior3.get_MAP_PM machine() [0]

# draw machine
ns_post_em.draw (filename=’ figures/ns_posterior_mach.pdf’,

show=False)
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Posterior

MAP topology— non-stationary source
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