Bayesian Inference for ←-machines Lecture 2

Christopher C. Strelioff

Complexity Sciences Center & Department of Physics University of California at Davis

2013.05.16

Overview

- Today
 - Inferring structure (model topology)
 - Enumeration and model comparison for topological ϵ -machines
 - Ex 3: Infer structure of EvenOdd process
 - Ex 4: Survey of inferring Golden Mean, Even, Simple Nonunifilar Source (SNS)
 - Complications: out-of-class, non-stationary processes
- Previous Lecture
 - Goals of statistical inference
 - Introduction to Bayesian inference
 - Ex 1: Biased Coin
 - Unifilar HMMs and ϵ -machines
 - Ex 2: EvenOdd Process
 - Infer transition probabilities and start state

Review from last time

Bayes' Theorem: Update **Prior** Distribution to **Posterior** Distribution

• We inferred transition probabilities θ_i given data D and assumed model structure M_i

$$\mathbb{P}(\theta_i|\mathbf{D},\sigma_{i,0},M_i) = \frac{\mathbb{P}(\mathbf{D}|\theta_i,\sigma_{i,0},M_i)\,\mathbb{P}(\theta_i|\sigma_{i,0},M_i)}{\mathbb{P}(\mathbf{D}|\sigma_{i,0},M_i)}$$

Also, we inferred the start state (or, hidden state path)

$$\mathbb{P}(\sigma_{i,0}|\mathbf{D}, M_i) = \frac{\mathbb{P}(\mathbf{D}|\sigma_{i,0}, M_i) \, \mathbb{P}(\sigma_{i,0}|M_i)}{\mathbb{P}(\mathbf{D}|M_i)}$$

• Both of these inferences were made using **fixed** model topology M_i

Review from last time

Bayes' Theorem: Update **Prior** Distribution to **Posterior** Distribution

• We inferred transition probabilities θ_i given data D and assumed model structure M_i

$$\mathbb{P}(\theta_i|\mathbf{D},\sigma_{i,0},M_i) = \frac{\mathbb{P}(\mathbf{D}|\theta_i,\sigma_{i,0},M_i)\mathbb{P}(\theta_i|\sigma_{i,0},M_i)}{\mathbb{P}(\mathbf{D}|\sigma_{i,0},M_i)}$$

Also, we inferred the start state (or, hidden state path)

$$\mathbb{P}(\sigma_{i,0}|\mathbf{D}, M_i) = \frac{\mathbb{P}(\mathbf{D}|\sigma_{i,0}, M_i) \mathbb{P}(\sigma_{i,0}|M_i)}{\mathbb{P}(\mathbf{D}|M_i)}$$

• Both of these inferences were made using **fixed** model topology M_i

Review from last time

Bayes' Theorem: Update **Prior** Distribution to **Posterior** Distribution

• We inferred transition probabilities θ_i given data D and assumed model structure M_i

$$\underbrace{\mathbb{P}(\theta_i|\mathbf{D},\sigma_{i,0},M_i)} = \frac{\mathbb{P}(\mathbf{D}|\theta_i,\sigma_{i,0},M_i)\,\mathbb{P}(\theta_i|\sigma_{i,0},M_i)}{\mathbb{P}(\mathbf{D}|\sigma_{i,0},M_i)}$$

Also, we inferred the start state (or, hidden state path)

$$\mathbb{P}(\sigma_{i,0}|\mathbf{D}, M_i) = \frac{\mathbb{P}(\mathbf{D}|\sigma_{i,0}, M_i) \, \mathbb{P}(\sigma_{i,0}|M_i)}{\mathbb{P}(\mathbf{D}|M_i)}$$

• Both of these inferences were made using **fixed** model topology M_i

A Step Back...

- How is this related to other inference algorithms for HMMs?
- Properties of other approaches (very generally)
 - Usually infer parameters for fixed (assumed) HMM topology
 - Typically consider nonunifiliar topologies
 - Algorithms: expectation-maximization, Baum-Welch, etc.
- What we do differently
 - Restrict to unifilar HMM topologies
 - Use model comparison to infer model topology
 - Provide a distribution over candidate models
 - A different view of structural inference?
- What set of models M should we use?

Topological ϵ -machines

A set of candidate structures

- Algorithm to efficiently enumerate all topological ϵ -machines with specified alphabet and number of states
 - B. Johnson et al., *Enumerating Finitary Processes* http://arxiv.org/abs/1011.0036
- Use this algorithm to create our set of candidate model structures M
 - A brute-force method to infer structure
 - Try all structures within time/computational limits

Finite-state, edge-labeled HMMs

Definition

A finite-state, edge-labeled, hidden Markov model (HMM) consists of:

- **1.** A finite set of hidden states $S = \{\sigma_1, \ldots, \sigma_n\}$
- 2. A finite output alphabet \mathcal{X}
- 3. A set of $N \times N$ symbol-labeled transition matrices $T^{(x)}$, $x \in \mathcal{X}$, where $T_{i,j}^{(x)}$ is the probability of transitioning from state σ_i to state σ_j on symbol x. The corresponding overall state-to-state transition matrix is denoted $T = \sum_{x \in \mathcal{X}} T^{(x)}$.

Finite-state ϵ -machine

Definition

A finite-state ϵ -machine is a finite-state, edge-labeled, hidden Markov model with the following properties:

- 1. Unifilarity: For each state $\sigma_i \in S$ and each symbol $x \in X$ there is at most one outgoing edge from state σ_i that outputs symbol x.
- 2. Probabilistically distinct states: For each pair of distinct states $\sigma_k, \sigma_j \in \mathcal{S}$ there exists some finite word $w = x_0 x_1 \dots x_{L-1}$ such that:

$$\mathbb{P}(w|\sigma_0 = \sigma_k) \neq \mathbb{P}(w|\sigma_0 = \sigma_i)$$

Topological ϵ -machines

Definition

A topological ϵ -machine is a finite-state ϵ -machine where the transition probabilities for each state are equal for all outgoing edges.

Okay Nope $\frac{1}{2}|0$ A $\frac{1}{2}|1$ B $\frac{1}{2}|0$ A $\frac{1}{2}|1$ B $\frac{1}{2}|0$

Topological ϵ -machines

How many are there?

States, n	Edges, k	$F_{n,2}$
1		1
	2	1
2		7
	2	1
	3	6
3		78
	3	2
	4	22
	5	54
4		1,388
	4	3
	5	68
	6	403
	7	914

Number of

- full alphabet
- binary
- topological ϵ -machines

History vs Generator *ϵ*-machines

How to think about this approach to structural inference

- You have studied the **history** formulation for ϵ -machines using the equivalence relation
 - A process determined the ε-machine structure through the equivalence relation
- An alternative is the generator formulation developed by Travers and Crutchfield*
 - An ϵ -machine defines the process that can be produced by the given structure
 - Formulations recently proved to be equivalent

^{*}Travers & Crutchfield, Exact synchronization for finite-state sources (2011); Asymptotic synchronization for finite-state sources (2011); Equivalence of history and generator ϵ -machines (2011).

Model Comparison for Topology: Update Prior to Posterior

- Choose a set of candidate models M
- Bayes' Theorem at the level of structure, or model topology

$$\mathbb{P}(M_j|\mathbf{D}, \mathcal{M}) = \frac{\mathbb{P}(\mathbf{D}|M_j, \mathcal{M}) \, \mathbb{P}(M_j|\mathcal{M})}{\mathbb{P}(\mathbf{D}|\mathcal{M})}$$

where

$$\mathbb{P}(\mathbf{D}|\mathcal{M}) = \sum_{M_i \in \mathcal{M}} \mathbb{P}(\mathbf{D}|M_i, \mathcal{M})\mathbb{P}(M_i|\mathcal{M})$$

- As before, we have to specify a prior at this level
- We also use $\mathbb{P}(\mathbf{D}|M_j, \mathcal{M}) = \mathbb{P}(\mathbf{D}|M_j)$
 - $\mathbb{P}(\mathbf{D}|M_j)$ came from inferring start state

Model Comparison for Topology: Update Prior to Posterior

- Choose a set of candidate models M
- Bayes' Theorem at the level of structure, or model topology

$$\mathbb{P}(M_j|\mathbf{D}, \mathcal{M}) = \frac{\mathbb{P}(\mathbf{D}|M_j, \mathcal{M})\mathbb{P}(M_j|\mathcal{M})}{\mathbb{P}(\mathbf{D}|\mathcal{M})}$$

where

$$\mathbb{P}(\mathbf{D}|\mathcal{M}) = \sum_{M_i \in \mathcal{M}} \mathbb{P}(\mathbf{D}|M_i, \mathcal{M})\mathbb{P}(M_i|\mathcal{M})$$

- As before, we have to specify a prior at this level
- We also use $\mathbb{P}(\mathbf{D}|M_j, \mathcal{M}) = \mathbb{P}(\mathbf{D}|M_j)$
 - $\mathbb{P}(\mathbf{D}|M_j)$ came from inferring start state

Model Comparison for Topology: Update Prior to Posterior

- Choose a set of candidate models M
- Bayes' Theorem at the level of structure, or model topology

$$\underbrace{\mathbb{P}(M_j|\mathbf{D}, \mathcal{M})} = \frac{\mathbb{P}(\mathbf{D}|M_j, \mathcal{M}) \, \mathbb{P}(M_j|\mathcal{M})}{\mathbb{P}(\mathbf{D}|\mathcal{M})}$$

where

$$\mathbb{P}(\mathbf{D}|\mathcal{M}) = \sum_{M_i \in \mathcal{M}} \mathbb{P}(\mathbf{D}|M_i, \mathcal{M}) \mathbb{P}(M_i|\mathcal{M})$$

- As before, we have to specify a prior at this level
- We also use $\mathbb{P}(\mathbf{D}|M_j, \mathcal{M}) = \mathbb{P}(\mathbf{D}|M_j)$
 - $\mathbb{P}(\mathbf{D}|M_j)$ came from inferring start state

Prior for Model Topologies

Inferring Structure

 We choose a simple, single parameter, prior over model topologies

$$\mathbb{P}(M_i|\mathcal{M}) = \frac{\exp(-\beta f(M_i))}{\sum_{M_i \in \mathcal{M}} \exp(-\beta f(M_j))}$$

- The function is chosen to penalize for larger structure
 - Number of states in HMM— this is the CMPy default
 - Number of edges in HMM
 - Other ideas?

What do we do with the posterior at this level?

Sampling vs MAP

 Application of Bayes' theorem provides the posterior distribution over models in M

$$\mathbb{P}(M_j|D,\mathcal{M})$$
 , $\sum_{M_j\in\mathcal{M}}\mathbb{P}(M_j|D,\mathcal{M})=1$

- Use 1: Sample from posterior over models
 - Quantify uncertainty in structure
 - Can also quantify uncertainty in start state and transition probabilities as seen previously
 - Estimate mean and credible interval for any function of interest: h_{μ} , C_{μ} , etc.
- Use 2: Choose a single maximum a posteriori (MAP) structure

$$M_{\text{map}} = \underset{M_j \in \mathcal{M}}{\operatorname{argmax}} \mathbb{P}(M_j | \mathbf{D}, \mathcal{M})$$

Sampling Algorithms

Whole posterior vs MAP

ALGORITHM 1: Sample using all topologies in M

```
\begin{array}{ll} \text{for } n \text{ in } (1,N_s) \text{ do}: \\ M_i \sim \mathbb{P}(M_i|\mathbf{D},\mathcal{M}) & \text{\# sample topology} \\ \sigma_{i,0} \sim \mathbb{P}(\sigma_{i,0}|\mathbf{D},M_i) & \text{\# sample start state} \\ \theta_i \sim \mathbb{P}(\theta_i|\mathbf{D},\sigma_{i,0},M_i) & \text{\# sample parameters} \\ f_n = f(\{p(x|\sigma_i)\}) & \text{\# store sample} \end{array}
```

ALGORITHM 2: Sample using MAP topology

```
\begin{split} M_{\text{map}} &= \operatorname{argmax}_{M_i \in \mathcal{M}} P(M_i | \mathbf{D}, \mathcal{M}) \quad \text{\# find MAP topology} \\ & \text{for } n \text{ in } (1, N_s) \text{ do:} \\ & \quad | \sigma_{i,0} \sim \mathbb{P}(\sigma_{i,0} | \mathbf{D}, M_{\text{map}}) \quad \text{\# sample start state} \\ & \quad | \theta_i \sim \mathbb{P}(\theta_i | \mathbf{D}, \sigma_{i,0}, M_{\text{map}}) \quad \text{\# sample parameters} \\ & \quad | f_n = f(\{p(x | \sigma_i)\}) \quad \text{\# store sample} \end{split}
```

Ex 3: Inferring the Structure of EvenOdd Process

EvenOdd Process

Use CMPy to generate data

Prior over all 1- to 4-state topological ϵ -machines

Instantiate in CMPy

```
# import inference code
import cmpy.inference.bayesianem as bayesem
# get set of 1- to 4-state topological epsilon machines
modelset1 = bayesem.LibraryGenerator(2, [1, 2, 3, 4])
# declare prior over models
prior = bayesem.ModelComparisonEM(modelset1, beta=4., verbose=True)
*Infer Machine Topology (InferEM)
 * Model Prior- beta: 4.00000
 * Inferring all machines...
  ** 1474 machines considered, 1474 possible
 * Calculating log evidence for all machines...
 * Calculating model probabilities for all machines...
```

Prior

Most probable topology (a priori)

- Get MAP topology and use prior mean for transition probabilities
- Average over uncertainty in start state

Posterior given data from EvenOdd Process

Instantiate in CMPy

```
# generate data
eo_data = eomachine.symbols(5000)
# get set of 1- to 4-state topological epsilon machines
modelset2 = bayesem.LibraryGenerator(2, [1, 2, 3, 4])
# declare posterior over models
posterior = bayesem.ModelComparisonEM(modelset2, eo_data, beta=4.,
                                   verbose=True)
*Infer Machine Topology (InferEM)
 * Model Prior- beta: 4.00000
 * Inferring all machines...
  ** 1474 machines considered, 175 possible
 * Calculating log evidence for all machines...
 * Calculating model probabilities for all machines...
```

Posterior

MAP topology

- Get MAP topology and use posterior mean for transition probabilities
- Average over uncertainty in start state (if any)

Posterior

MAP topology

Inferred Topology

True Topology

Prior, Posterior and C_{μ}, h_{μ}

Sample from prior & posterior

```
num\_samples = 2000
eo_prior_hmu = []; eo_prior_Cmu = [];
eo_posterior_hmu = []; eo_posterior_Cmu = [];
# generate and store samples
for n in range(num_samples):
    # prior
    (node, machine) = prior.generate_sample()
    hmu = machine.entropy_rate()
    Cmu = machine.statistical_complexity()
    eo_prior_hmu.append(hmu); eo_prior_Cmu.append(Cmu)
    # posterior
    (node, machine) = posterior.generate_sample()
    hmu = machine.entropy_rate()
    Cmu = machine.statistical_complexity()
    eo_posterior_hmu.append(hmu); eo_posterior_Cmu.append(Cmu)
```

Prior vs Posterior, h_{μ}

Plot h_{μ} samples

```
import pylab as plt
# prior hmu -- blue
n, bins, patches = plt.hist(eo_prior_hmu, 50, range=[0.0,1.0],
                            normed=1, facecolor='blue', alpha=0.75,
                            cumulative=False)
# posterior hmu -- green
n, bins, patches = plt.hist(eo_posterior_hmu, 50, range=[0.0,1.0],
                            normed=1, facecolor='green', alpha=0.75,
                            cumulative=False)
plt.xlabel(r'$h_{\mu}$ [bits/symbol]')
plt.title('Entropy Rate Samples from prior (blue) posterior (green)')
plt.grid(True)
plt.savefig('figures/eo_hmu_hist.pdf')
```

Prior vs Posterior, h_{μ}

Plot h_{μ} samples

true hmu: 0.438432153702 [bits/symbol]

Prior vs Posterior, C_{μ}

Plot C_{μ} samples

```
plt.clf()
# prior Cmu -- blue
n, bins, patches = plt.hist(eo_prior_Cmu, 50, range=[0.0,2.0],
                            normed=1, facecolor='blue', alpha=0.75,
                            cumulative=False)
# posterior Cmu -- green
n, bins, patches = plt.hist(eo_posterior_Cmu, 50, range=[0.0,2.0],
                            normed=1, facecolor='green', alpha=0.75,
                            cumulative=False)
plt.xlabel(r'$C_{\mu}$ [bits]')
plt.title('Statistical Complexity Samples from prior (blue) posterior
n)')
plt.grid(True)
plt.savefig('figures/eo_Cmu_hist.pdf')
```

Prior vs Posterior, C_{μ}

Plot C_{μ} samples

true Cmu: 1.84152253296 [bits]

Prior vs Posterior, C_{μ}, h_{μ}

Plot C_{μ} and h_{μ} samples

Prior vs Posterior, C_{μ}, h_{μ}

Plot C_{μ} and h_{μ} samples

true Cmu: 1.84152253296 [bits]

true hmu: 0.438432153702 [bits/symbol]

Survey

Golden Mean, Even, SNS

- A single time series of length $T=2^{17}$ is generated
- Sub-strings of the time series are analyzed at lengths $L=2^i$ for $i=0,1,2,\ldots,17$
 - Notate these substrings as $D_{:L}$
- Use 36 660 models that make up all 1- to 5-state binary, topological
 ϵ-machines
 - Use $\beta = 4$ in all examples
 - Use $50\,000$ samples for each L
- ullet Consider how inference converges as L increases
- Look at h_{μ} and C_{μ} as proxies for models inferred

Prior over models

Plot C_{μ} and h_{μ} samples: $\beta = 0$ (black), $\beta = 2$ (brown), $\beta = 4$ (blue)

Lecture 34: Natural Computation & Self-Organization, Physics 256B (Spring 2013); Jim Crutchfield

Golden Mean Process

Posterior over models, GM data

 C_{μ} , h_{μ} samples: L=1 (black), L=64 (brown), $L=16\,384$ (blue)

Lecture 34: Natural Computation & Self-Organization, Physics 256B (Spring 2013); Jim Crutchfield

Posterior over models, GM data

 C_{μ} , h_{μ} convergence

Even Process

Posterior over models, Even data

 C_{μ} , h_{μ} samples: L=1 (black), L=64 (brown), $L=16\,384$ (blue)

Lecture 34: Natural Computation & Self-Organization, Physics 256B (Spring 2013); Jim Crutchfield

Posterior over models, Even data

 C_{μ} , h_{μ} convergence

Simple Nonunifilar Source

Posterior over models, SNS data

 C_{μ} , h_{μ} samples: L=1 (black), L=64 (brown), $L=16\,384$ (blue)

Lecture 34: Natural Computation & Self-Organization, Physics 256B (Spring 2013); Jim Crutchfield

Posterior over models, SNS data

 C_{μ} , h_{μ} convergence

Accepting Topologies

How many topologies accept data from GM, Even, SNS?

- GM, SNS: 6 225 of 36 660 accept data
- Even: 3813 of 36660 accept data

Complications

Things to think about...

- ullet True model topology may not be in ${\mathcal M}$
 - We've seen analysis of SNS data— out-of-class
 - We might also not have machines with enough states in our set
- We assume stationary process
 – structure and transition probabilities do not change with time/space
 - Resulting inference might be unclear
- Many others issues
 - Check the inferred model(s) as much as possible!

Ex: Not enough states in M

Posterior given data from EvenOdd Process

Use all 1- to 3-state machines

MAP topology- out-of-class

- Get MAP topology and use posterior mean for transition probabilities
- Average over uncertainty in start state (if any)

MAP topology— out-of-class

Inferred Topology

True Topology

Make non-stationary: GM then Even

Create data first

```
# get machines
gm = cmpy.machines.GoldenMean()
even = cmpy.machines.Even()

# GM data first, Even Next
ns_data = gm.symbols(4000)
ns_data = ns_data + even.symbols(6000)
```

Posterior given data from non-stationary source

Use all 1- to 3-state machines

MAP topology- non-stationary source

- Get MAP topology and use posterior mean for transition probabilities
- Average over uncertainty in start state (if any)

MAP topology- non-stationary source

