Reading for this lecture: CMR articles *PRATISP*, *IACP*, *IACPLCOCS*

Causal states:

Conditions of knowledge that lead to optimal prediction

Today:

A hierarchy of states for optimal prediction

Agenda:

- Review
- Conditional Probabilities
- Mixed State Presentations
- Examples
- How to Calculate Mixed State Presentations
- Complexity Measures and Efficient Block Entropies
- Synchronization Information

This lecture

Next

Review:

Golden Mean Process and its E-Machine:

$$A = \{0, 1\}$$
 $A = \{A, B\}$

$$T^{(0)} = \begin{pmatrix} 0 & \frac{1}{2} \\ 0 & 0 \end{pmatrix} \qquad T^{(1)} = \begin{pmatrix} \frac{1}{2} & 0 \\ 1 & 0 \end{pmatrix}$$

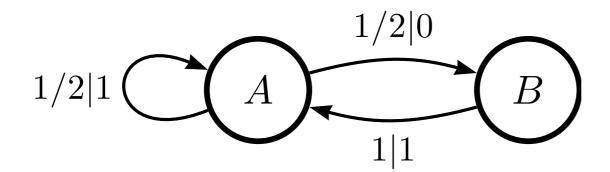
$$T \equiv T^{(0)} + T^{(1)}$$

$$\pi = \pi T$$

$$\Rightarrow \pi = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

Review ...

Golden Mean Process and its ε-Machine:



Word distribution:

$$\Pr(w) = \pi T^w \mathbf{1}$$

$$Pr(0) = \pi T^0 \mathbf{1} = 1/3$$

$$\Pr(1) = \pi T^1 \mathbf{1} = 2/3$$

$$\Pr(00) = \pi T^0 T^0 \mathbf{1} = 0$$

$$Pr(01) = \pi T^0 T^1 \mathbf{1} = 1/3$$

$$Pr(10) = \pi T^1 T^0 \mathbf{1} = 1/3$$

$$Pr(11) = \pi T^1 T^1 \mathbf{1} = 1/3$$

Review ... Processes

Probability theory:

- Discrete alphabet ${\cal A}$
- Random variable X_t at time t
- Instance $x_t \in \mathcal{A}$ at time t

Random variable's probability mass function:

$$X_t$$
 is distributed (18 $\text{Pr}(X_t = x)$

Types of RVs:

- Quantitative: Age, voltage, ...
- Categorical: Names, colors, ... Expectation value?

$$red Pr(red) + blue Pr(blue)?$$

$$fog = sunny Pr(sunny) + rain Pr(rain)?$$

Review ... Processes

Observed Process: $\Pr(\overrightarrow{X})$

Stationary: Probabilities time-independent

ε-Machines: Convenient representation

Typically, one of many possible presentations

Stationary probability of word:

$$\Pr(X^L = w) = \pi T^{(w)} \mathbf{1}$$

Observed process: Marginal distribution from machine "process":

$$\dots (\sigma, x)_{-1}(\sigma, x)_0(\sigma, x)_1 \dots \qquad \sigma \in \mathcal{S}, x \in \mathcal{A}$$

Implied: π is state distribution before w observed

Nonstationary state distributions? Sure thing!

More explicitly:

$$\Pr(X_t^L = w) = \sum \Pr(X_t^L = w | S_t = \sigma) \Pr(S_t = \sigma)$$

Lecture 27: Natural Computation & Self-Organization, Physics 256B (Spring 2014); Jim Crutchfield

Review ... Calculation?

State set: \mathcal{V}

Number of words grows $|\mathcal{A}|^L$

Efficient way to calculate word probabilities?

$$\Pr(X^L = w) = \pi T^{(w)} \mathbf{1}$$

Two ways:

$$\Pr(X^3 = abc) \equiv \pi T^a T^b T^c \mathbf{1} = \sum_{ijkl} \pi_i T^a_{ij} T^b_{jk} T^c_{kl} \qquad \mathbf{1}$$
$$= (((\pi T^a) T^b) T^c) \mathbf{1} \qquad \mathbf{2}$$

1.) Sum probability of each path generating w:

Time complexity: $O(|\mathcal{V}|^L)$

(2.) Track how path probabilities change as w is generated:

$$[\pi T^w]_{\sigma} = \Pr(X_t^L = w, S_{t+L} = \sigma)$$

Time complexity: $O(|\mathcal{V}|^2L)$

Conditional probability: Condition on an event Conditional distribution is still a distribution

Conditional Random Variables:

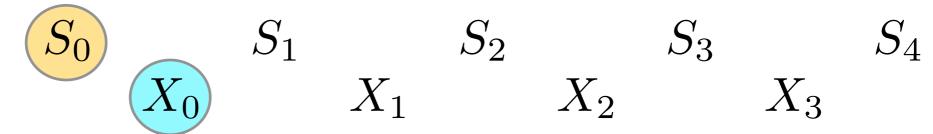
Example: $A = \{a, b\}$

$$Y_0 = \begin{cases} a & \text{if } X_0 = a \\ b & \text{if } X_0 = b \end{cases} \quad \Pr(Y_0 = y) \equiv \Pr(X_0 = y | S_0 = \sigma)$$

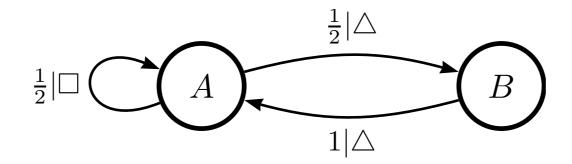
In words, Y_0 is a RV representing the distribution of RV X_0 conditioned on the event $S_0 = \sigma$.

Note: $H[Y_0] = H[X_0|S_0 = \sigma] \neq H[X_0|S_0]$

Conditional Random Variables ...



Example I: $J_0 \sim \Pr(X_0 | S_0 = A)$ for the Even process.



Note: $\Pr(J_0 = \triangle) \neq \Pr(X_0 = \triangle)$

$$\Pr(J_0 = \triangle) = \Pr(X_0 = \triangle | S_0 = A) = \frac{1}{2}$$

$$\Pr(X_0 = \triangle) = \pi T^{\triangle} \mathbf{1} = \frac{2}{3}$$

Conditional Random Variables ...

Example 2: $F_2 \sim \Pr(S_2 | S_0 = \sigma_0)$

$$\Pr(X_2 = x_2 | F_2 = \sigma_2) = \Pr(X_2 = x_2 | (S_2 = \sigma_2 | S_0 = \sigma_0))$$

$$= \Pr(X_2 = x_2 | S_2 = \sigma_2, S_0 = \sigma_0)$$

$$= \Pr(X_2 = x_2 | S_2 = \sigma_2)$$

a condition of a condition is still a condition

State shielding

So,
$$H[X_2|F_2=\sigma_2]=H[X_2|S_2=\sigma_2]$$

Conditional Random Variables ...

Example 2: $F_2 \sim \Pr(S_2 | S_0 = \sigma_0)$

$$\Pr(X_2 = x_2 | F_2 = \sigma_2) = \Pr(X_2 = x_2 | S_2 = \sigma_2)$$
$$H[X_2 | F_2 = \sigma_2] = H[X_2 | S_2 = \sigma_2]$$

But,
$$H[X_2|F_2] = \sum_{\sigma_2} \Pr(F_2 = \sigma_2) H[X_2|F_2 = \sigma_2]$$

 $= \sum_{\sigma_2} \Pr(S_2 = \sigma_2|S_0 = \sigma_0) H[X_2|S_2 = \sigma_2]$
 $\neq H[X_2|S_2]$

Conditional Random Variables ...

$$S_0$$
 S_1 S_2 S_3 S_4 S_4 S_5 S_6 S_7 S_8 S_8

Example 3: $G_2 \sim \Pr(S_2 | X_2 = x_2)$

$$\Pr(S_3 = \sigma_3 | G_2 = \sigma_2) = \Pr(S_3 = \sigma_3 | (S_2 = \sigma_2 | X_2 = x_2))$$

$$= \Pr(S_3 = \sigma_3 | S_2 = \sigma_2, X_2 = x_2)$$

$$H[S_3 | G_2 = \sigma_2] = H[S_3 | S_2 = \sigma_2, X_2 = x_2] \quad (= 0 \text{ if unifilar})$$

$$H[S_3 | G_2] = \sum_{\sigma_2} \Pr(G_2 = \sigma_2) H[S_3 | G_2 = \sigma_2]$$

$$= \sum_{\sigma_2} \Pr(S_2 = \sigma_2 | X_2 = x_2) H[S_3 | S_2 = \sigma_2, X_2 = x_2]$$

$$\neq H[S_3 | S_2, X_2 = x_2]$$

Conditional Random Variables ... Summary

Nested conditions are important until everything is an event.

Define:
$$A' \sim \Pr(A|B = b)$$

$$H[C|A' = a] = H[C|(A = a|B = b)]$$

= $H[C|A = a, B = b]$

$$H[C|A'] = H[C|(A|B = b)]$$

= $\sum_{a} \Pr(A = a|B = b)H[C|(A = a|B = b)]$
= $\sum_{a} \Pr(A = a|B = b)H[C|A = a, B = b]$

$$H[C|A, B = b] = \sum_{a} \Pr(A = a, B = b) H[C|A = a, B = b]$$

Conditional Random Variables ...

Recall:
$$\Pr(X_t^L = w) = \sum_{\sigma \in \mathcal{S}} \Pr(X_t^L = w | S_t = \sigma) \Pr(S_t = \sigma)$$

- Previously: Conditioned on events.
- Now, condition on random variable (~ state distribution).
- Must make dependence on S_t explicit:
 - RHS looks like an expectation value.
 - Think of each $\Pr(X_t^L = w | S_t = \sigma)$ as instance of a RV.

Conditional Random Variables ...

Recall:
$$\Pr(X_t^L = w) = \sum_{\sigma \in \mathcal{S}} \Pr(X_t^L = w | S_t = \sigma) \Pr(S_t = \sigma)$$

Define a quantitative random variable:

$$Z \equiv \Pr(X_t^L = w | S_t = \sigma)$$

$$= \begin{cases} \Pr(X_t^L = w | S_t = A) & \text{if } S_t = A \\ \Pr(X_t^L = w | S_t = B) & \text{if } S_t = B \end{cases}$$

$$\Pr(Z = z) = \Pr(Z = \Pr(X_t^L = w | S_t = \sigma))$$
$$\equiv \Pr(S_t = \sigma)$$

$$\langle Z \rangle = \sum_{z} z \Pr(Z = z)$$

= $\sum_{z} \Pr(X_t^L = w | S_t = \sigma) \Pr(S_t = \sigma)$

Conditional Random Variables ...

Recall:
$$\Pr(X_t^L = w) = \sum_{\sigma \in \mathcal{S}} \Pr(X_t^L = w | S_t = \sigma) \Pr(S_t = \sigma)$$

Thinking about Z is tedious.

Adopt a shorthand.

Definition:

$$\Pr(X_t^L = w | S_t) \equiv \left\langle \Pr(X_t^L = w | S_t = \sigma) \right\rangle$$
$$= \sum_{\sigma} \Pr(X_t^L = w | S_t = \sigma) \Pr(S_t = \sigma)$$

Conditional Random Variables ...

Conflate RV with vector of probabilities:

Example: Word probabilities from stationary distribution:

$$\Pr(X_t^L = w | S_t \sim \pi) = \pi T^{(w)} \mathbf{1}$$

Example: Word probabilities from uniform distribution:

$$U_t \sim \Pr(U_t = \sigma) \equiv 1/|\mathcal{V}|$$

$$\Pr(X_t^L = w|U_t) = \frac{1}{|\mathcal{V}|} \sum_{\sigma} \Pr(X_t^L = w|U_t = \sigma)$$

Example: Word probabilities from arbitrary vector μ :

$$\Pr\left(X_t^L = w | S_t \sim \mu\right) = \mu T^{(w)} \mathbf{1}$$

Conditioning on Random Variables

Working with probabilities, either is fine, unambiguous:

$$\Pr(X_1 = x | S_1)$$

$$\Pr(X_1 = x | S_1 \sim \mu)$$

Working with distributions, either is fine, unambiguous:

$$\Pr(X_1|S_1)$$

$$\Pr(X_1|S_1 \sim \mu)$$

Conditioning on Random Variables ...

Working with functionals: $H[X_1|S_1]$ is ambiguous in new notation.

$$H[X_1|S_1] \stackrel{?}{=} \sum_{\sigma} \Pr(S_1 = \sigma) H[X_1|S_1 = \sigma)$$

Average entropy of X_1 conditioned on events of S_1

$$= -\sum_{\sigma} \Pr(\sigma) \sum_{x} \Pr(x|\sigma) \log_2 \Pr(x|\sigma)$$

$$= -\sum_{x} \sum_{\sigma} \Pr(\sigma, x) \log_2 \Pr(x|\sigma)$$

$$H[X_1|S_1] \stackrel{?}{=} -\sum_x \Pr(X_1 = x|S_1) \log_2 \Pr(X_1 = x|S_1)$$

Entropy of X_1 for various S_1 distributions

$$= -\sum_{x} \sum_{\sigma} \Pr(x|\sigma) \Pr(\sigma) \log_2 \sum_{\sigma} \Pr(x|\sigma) \Pr(\sigma)$$

$$= -\sum_{x} \sum_{\sigma} \Pr(\sigma, x) \log_2 \sum_{\sigma} \Pr(\sigma, x)$$

Conditioning on Random Variables ...

Working with functionals: $H[X_1|S_1]$ is ambiguous in new notation:

 $H[X_1|S_1]$ for average entropy of X_1 conditioned on events of S_1 .

 $H[X_1|S_1 \sim \mu]$ for entropy of X_1 for various S_1 distributions.

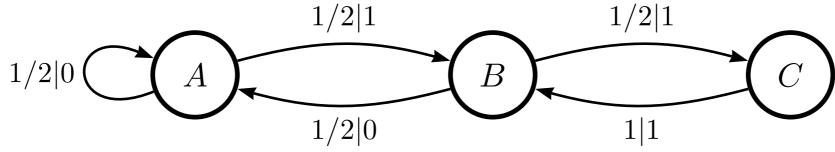
Old notation: Latter would be $H[X_1]$, corresponding to the viewpoint that all we care about is the observed process.

New notation: Can ask about multiple observed processes (from machine perspective), some stationary and some nonstationary.

If we use $\mu = \pi$, then we have the observed process.

Conditioning on Random Variables ...

Example: Odd Process



$$\pi = \begin{bmatrix} 2/5 & 2/5 & 1/5 \end{bmatrix}$$

$$\Pr(X_3 = 0 | S_3 = A, S_0 \sim \pi) = \sum_{\sigma} \Pr(X_3 = 0 | S_3 = A, S_0 = \sigma) \Pr(S_0 = \sigma)$$

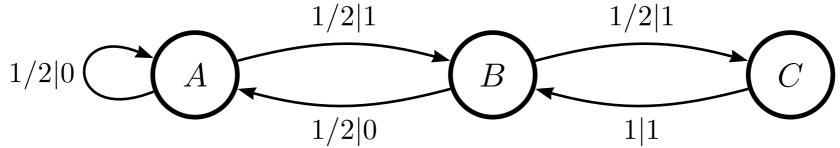
$$\text{states are shielding } \rightarrow = \sum_{\sigma} \Pr(X_3 = 0 | S_3 = A) \Pr(S_0 = \sigma)$$

$$= \Pr(X_3 = 0 | S_3 = A)$$

$$= 1/2$$

Conditioning on Random Variables ...

Example: Odd Process

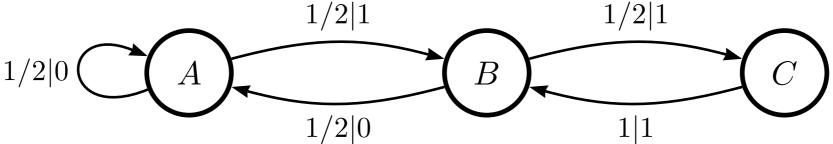


Take:
$$\mu = \begin{bmatrix} 1/3 & 1/3 & 1/3 \end{bmatrix}$$

$$\Pr(X_3 = x | S_1 \sim \mu) = \mu T T T^{(x)} \mathbf{1}$$
 Recall:
 $= \Pr(X_3 = x | S_2 \sim \mu T)$
 $= \Pr(X_3 = x | S_3 \sim \mu T)$

Conditioning on Random Variables ...

Example: Odd Process



Take:
$$\mu = \begin{bmatrix} 1/3 & 1/3 & 1/3 \end{bmatrix}$$

$$\Pr(X_3 = x | S_1 \sim \mu) = \mu T T T^{(x)} \mathbf{1}$$

= $\Pr(X_3 = x | S_2 \sim \mu T)$
= $\Pr(X_3 = x | S_3 \sim \mu T T)$

 $\mu \neq \pi$: shift only X_t is nonstationary $\rightarrow \neq \Pr(X_4 = x | S_1 \sim \mu)$

Cautions!

Shorthands:

$$\Pr(X_t = x | S_t) \leftrightarrow \{\Pr(X_t = x | S_t = \sigma) : \sigma \in \mathcal{V}\}$$

$$\Pr(X_t | S_t) \leftrightarrow \{\Pr(X_t = x | S_t = \sigma) : \sigma \in \mathcal{V}, x \in \mathcal{A}\}$$

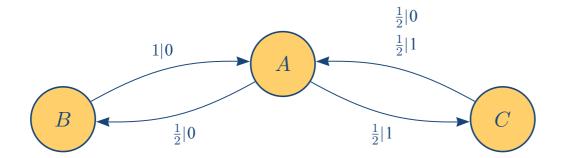
So far, we defined:

$$\Pr(X_t = x | S_t) = \langle \Pr(X_t = x | S_t = \sigma) \rangle$$
 Expected probability $\Pr(X_t | S_t) = \langle \Pr(X_t | S_t = \sigma) \rangle$ Expected distribution

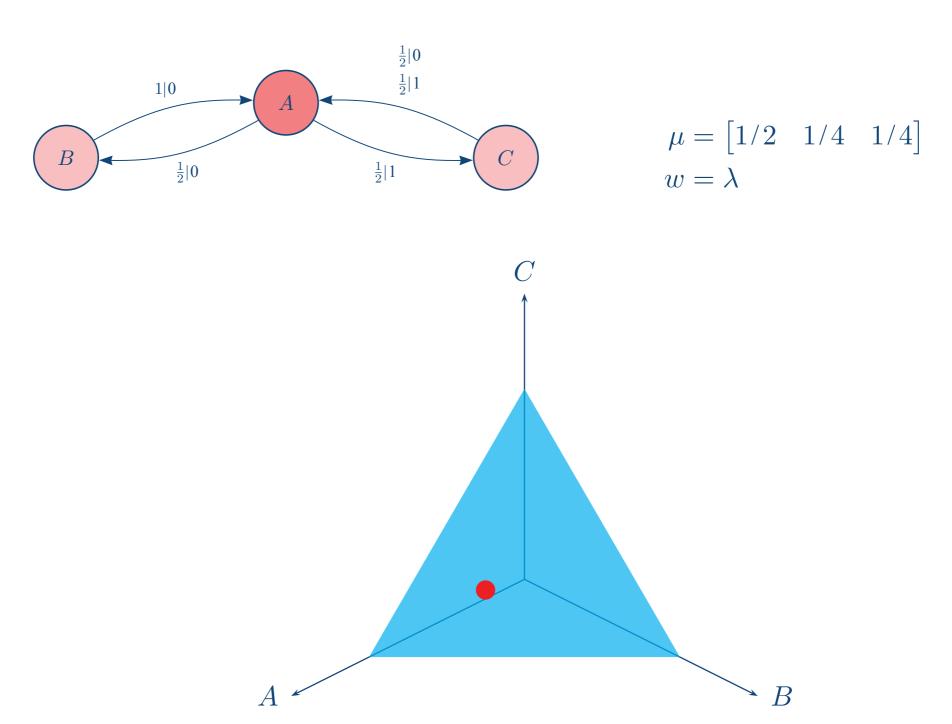
Context determines whether we refer to:

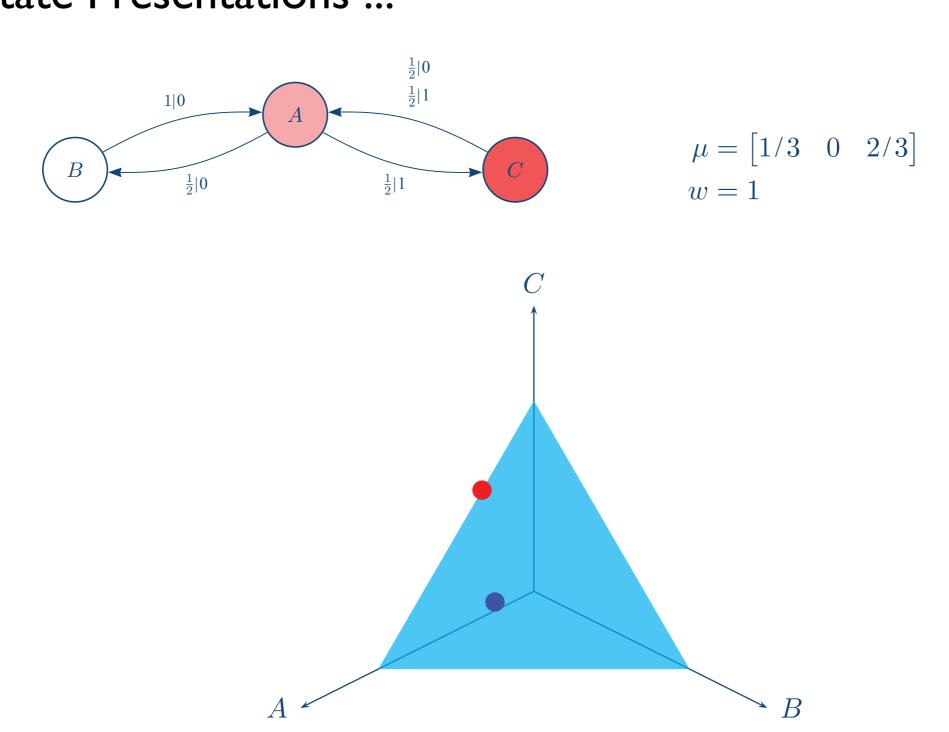
- "Set of conditional probabilities" versus "expected probability"
- "Set of conditional probabilities" versus "expected distribution"

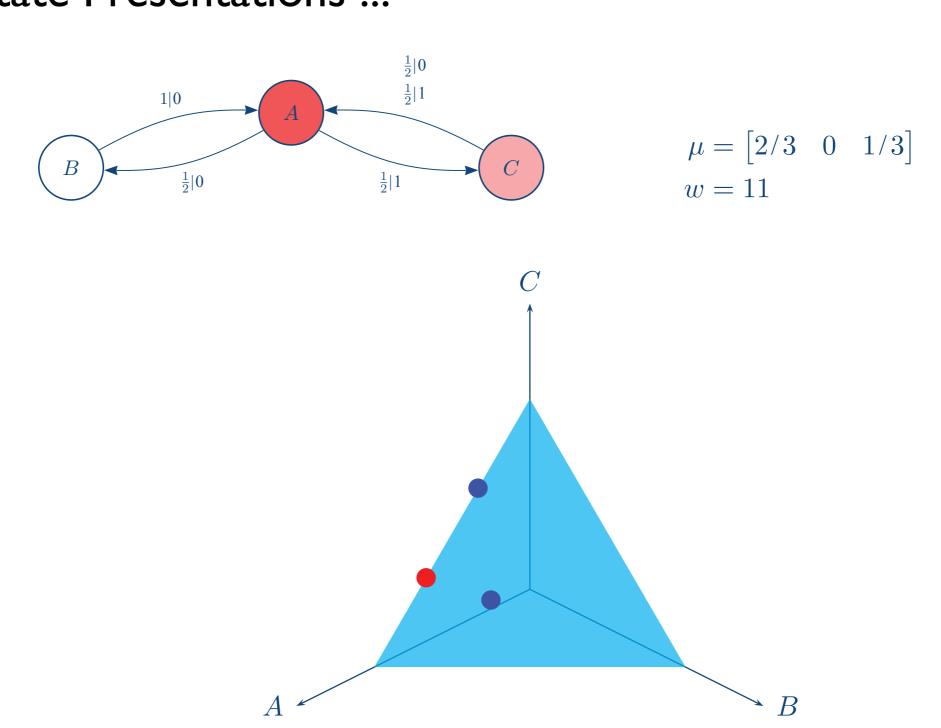
Mixed State Presentations: Evolving state distributions



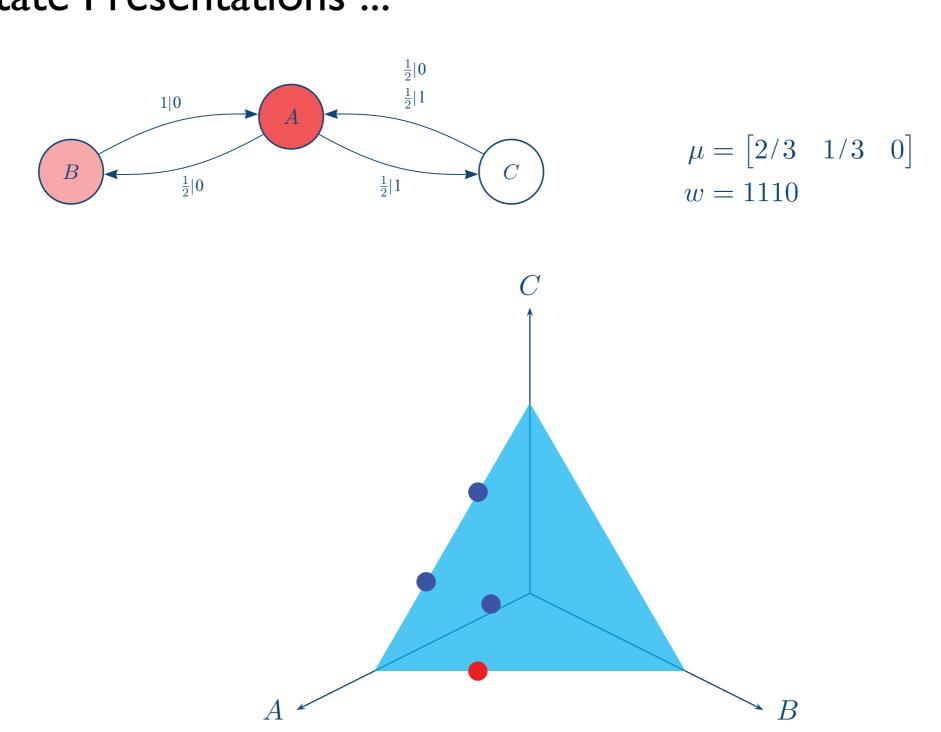
Mixed State Presentations ...



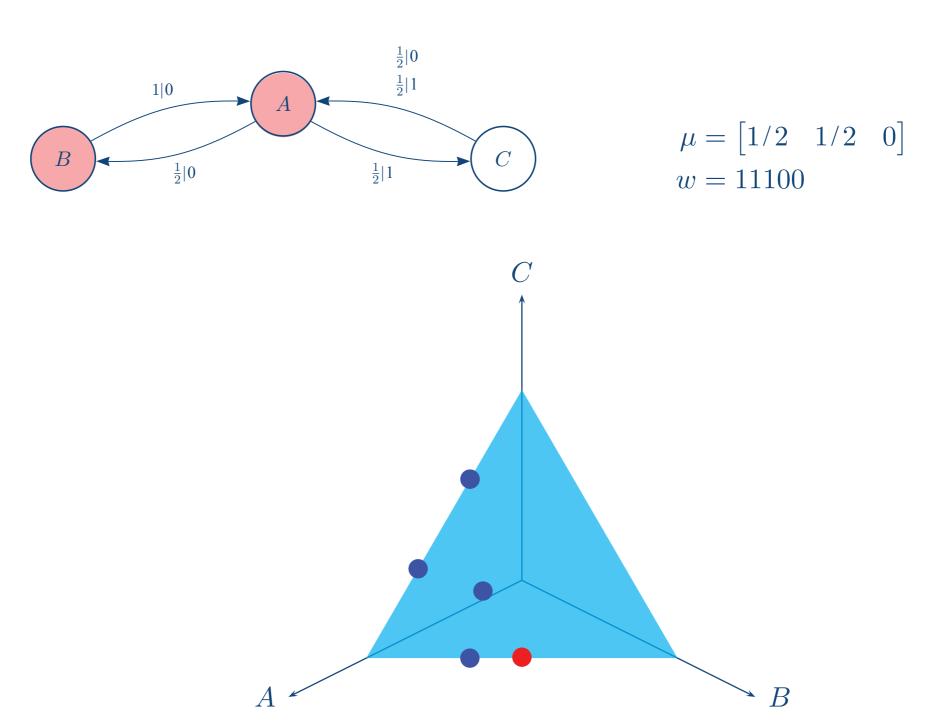


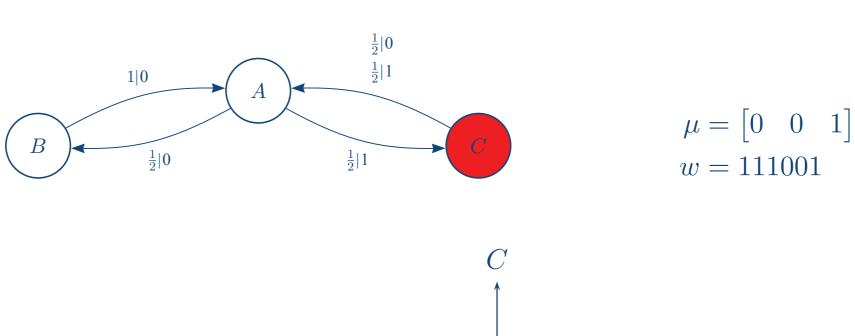


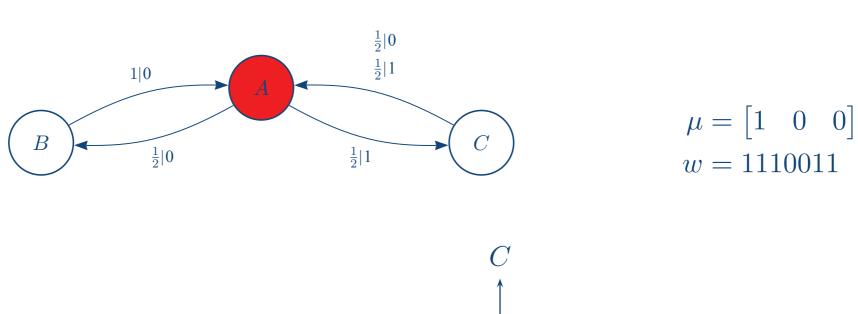


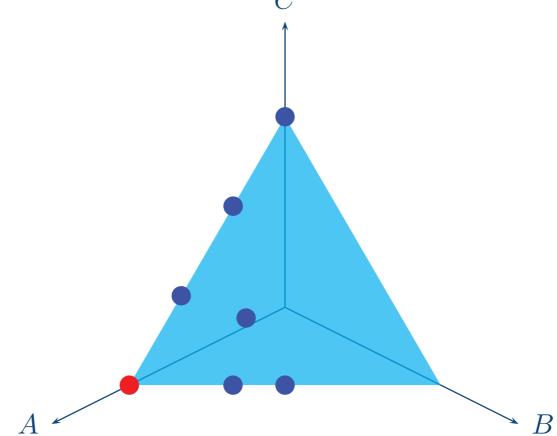


Mixed State Presentations ...

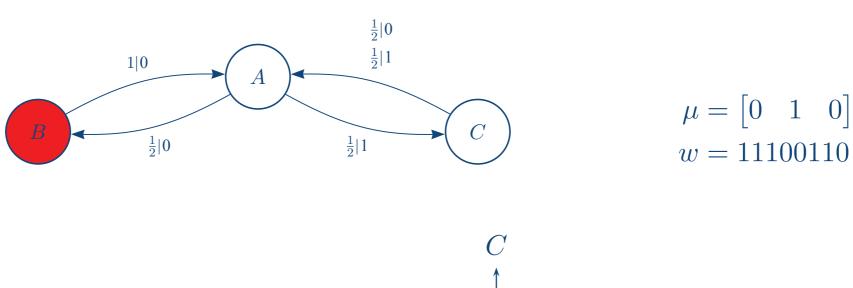


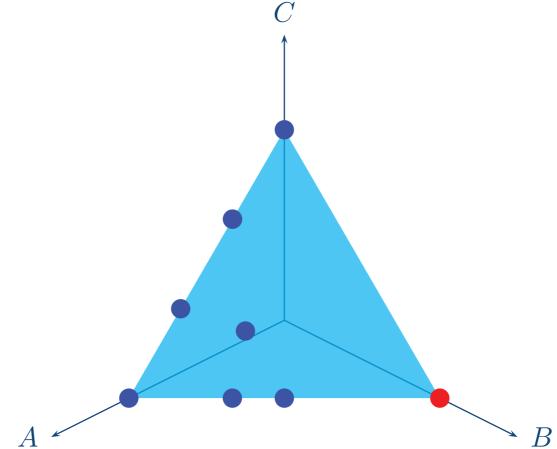


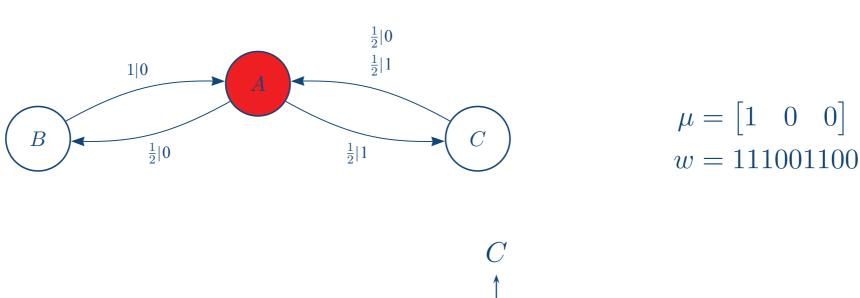


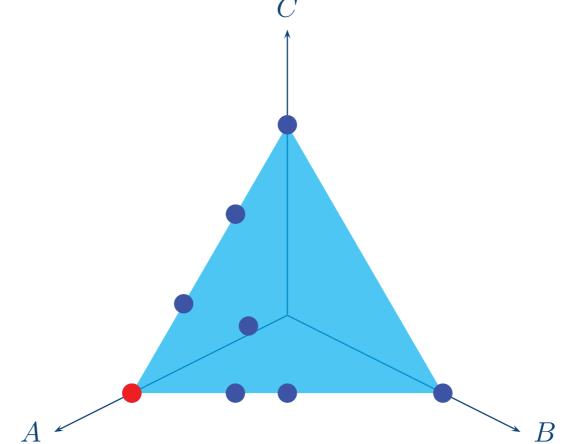


Mixed State Presentations ...









Mixed State Presentations ...

Mixed states are state distributions induced by seeing a word:

- I. Let $w \in \mathcal{A}^*$ such that |w| = L.
- 2. Let $\mu_t(\lambda)$ be a RV for the state distribution S_t at time t.

Then:

$$\Pr\left(\mu_{t+L}(w) = \sigma\right) \equiv \Pr\left(S_{t+L} = \sigma | X_t^L = w, \mu_t(\lambda)\right)$$

Comments:

- Mixed states are RVs.
- Conditioned on event w and random variable $\mu_t(\lambda)$.
- ullet Typically, we take t=0 and $\mu_t(\lambda)=\pi$.

Mixed State Presentations ...

Mixed states as vectors:

Write $\mu_{t+L}(w)$ as vector in $|\mathcal{V}|$ -dimensional vector space:

$$\mu_{t+L}(w) \equiv \Pr\left(S_{t+L}|X_t^L = w, \mu_t(\lambda)\right)$$

$$= \frac{\Pr\left(X_t^L = w, S_{t+L}|\mu_t(\lambda)\right)}{\Pr\left(X_t^L = w|\mu_t(\lambda)\right)}$$

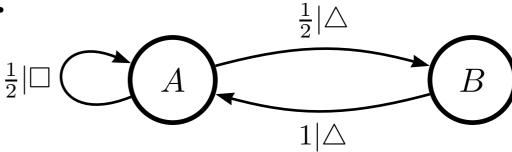
$$= \frac{\mu_t(\lambda)T^{(w)}}{\mu_t(\lambda)T^{(w)}\mathbf{1}}$$

With t=0 and $\mu_t(\lambda)=\pi$, we have:

$$\mu_L(w) = \frac{\pi T^{(w)}}{\pi T^{(w)} \mathbf{1}}$$

Mixed State Presentations ...

Example: Even Process



Have:
$$\mu_0(\lambda) = \pi = \begin{bmatrix} 2/3 & 1/3 \end{bmatrix}$$

Mixed state for $w = \triangle$:

$$\mu_1(\triangle) = \Pr(S_1 | X_0 = \triangle, S_0 \sim \pi)$$

$$= \frac{\pi T^{\triangle}}{\pi T^{\triangle} \mathbf{1}}$$

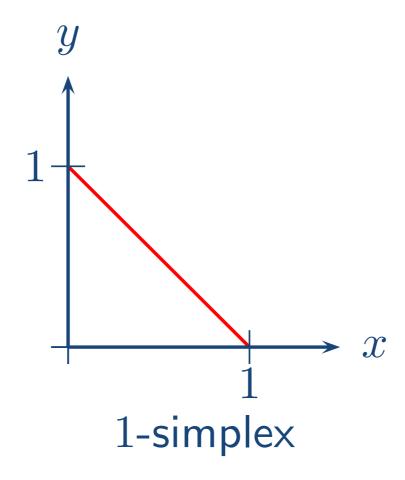
$$= \frac{\left[1/3 \quad 1/3\right]}{2/3}$$

$$= \left[1/2 \quad 1/2\right]$$

After seeing a \triangle , equally likely to be in A or B.

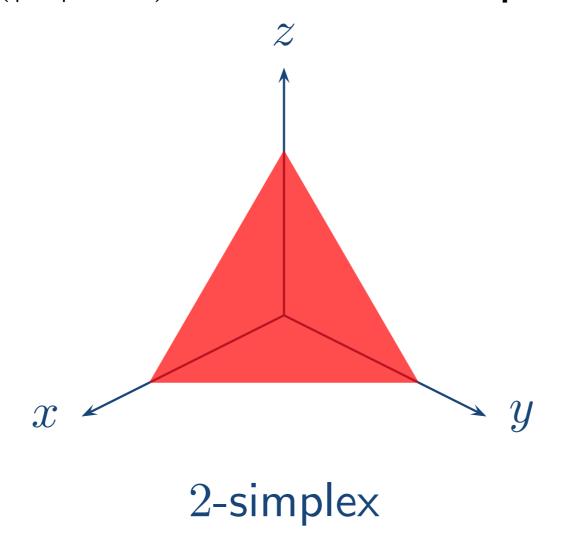
Simplicies:

- $|\mathcal{V}|$ -dimensional vectors are L_1 -normalized (in probability)
- ullet Visualize on a $(|\mathcal{V}|-1)$ -dimensional simplex



Simplicies:

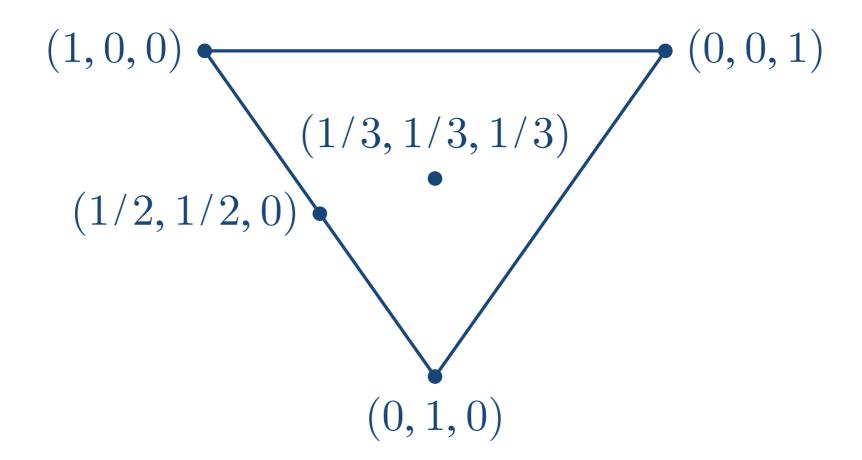
- $|\mathcal{V}|$ -dimensional vectors are L_1 -normalized (in probability)
- ullet Visualize on a $(|\mathcal{V}|-1)$ -dimensional simplex



Mixed State Presentations ...

Simplicies:

- $|\mathcal{V}|$ -dimensional vectors are L_1 -normalized (in probability)
- ullet Visualize on a $(|\mathcal{V}|-1)$ -dimensional simplex



Mixed State Presentations ...

Interpretation of mixed states:

- Uncertainty in the state given a word and starting distribution.
- $H[\mu_L(w)] = 0$: State of machine is known with probability 1.
- Mixed states with zero entropy are basis vectors: "pure" states.
- Distributions (or mixtures) over "pure" states.
- Points in a geometric space.
- Different words can lead to same state uncertainty:

Example: Even Process ...
$$\frac{1}{2}|\Box$$

A

 $1|\triangle$

$$\mu_1(\triangle) = \mu_3(\triangle\triangle\triangle) = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix}$$

Mixed State Presentations ...

Idea of mixed states:

- Words have a natural dynamic (concatenation): $w \xrightarrow{s} ws$
- Equivalence relation: $w \sim_{\mathrm{MSP}} w' \iff \mu(w) = \mu(w')$
- Each mixed state is a "state" of state uncertainty.
- Dynamic over mixed states gives evolution of uncertainty:

$$\begin{array}{cccc} w & \xrightarrow{s} & ws \\ \downarrow & & \downarrow \\ \mu(w) & \xrightarrow{s} & \mu(ws) \end{array}$$

Unifilarity inherited from dynamic over words.

```
Reading for next lecture: CMR articles
TBA
PRATISP
IACP
IACPLCOCS
```