Measures of Structural Complexity

Reading for this lecture:

CMR articles CMPPSS and RURO and Lecture Notes.

Information Measures of Complexity:

Measures		Interpretation
Entropy Rate	h_{μ}	Intrinsic Randomness
Excess Entropy	\mathbf{E}	Info: Past to Future
Predictability Gain	G	Redundancy
Transient Information	Т	Synchronization

How related to stored information (statistical complexity)?

How to get from ϵM ?

Measures from the ϵM :

Entropy Rate of a Process:

$$h_{\mu}(\Pr(\overset{\leftrightarrow}{S})) = \lim_{L \to \infty} \frac{H(L)}{L}$$

Directly from process's ϵM :

$$h_{\mu}\left(\Pr(\overset{\leftrightarrow}{S})\right) = h_{\mu}(\boldsymbol{\mathcal{S}})$$

Measures from the ϵM :

Entropy Rate given ϵM :

$$h_{\mu}(\boldsymbol{\mathcal{S}}) = -\sum_{\boldsymbol{\mathcal{S}}\in\boldsymbol{\mathcal{S}}} \Pr(\boldsymbol{\mathcal{S}}) \sum_{s\in\boldsymbol{\mathcal{A}},\boldsymbol{\mathcal{S}}'\in\boldsymbol{\mathcal{S}}} T_{\boldsymbol{\mathcal{S}}\boldsymbol{\mathcal{S}}'}^{(s)} \log_2 T_{\boldsymbol{\mathcal{S}}\boldsymbol{\mathcal{S}}'}^{(s)}$$

where $Pr(\mathcal{S})$ is casual-state asymptotic probability.

Possible only due to ϵM unifilarity!

I-I mapping between measurement sequences & internal paths.

Measures from the ϵM :

Entropy rate ...

Possible only due to unifilarity ... Why?

What if you use a nonunifilar HMM presentation?

Consider nonunifilar presentation of SNS Process:

Measures from the ϵM :

Method A:

Calculate entropy rate from nonunifilar presentation:

 $\frac{1}{2}$

 $\overline{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

К

Internal Markov chain:

nternal (= Fair Coin):
$$V = \{A, B\}$$

 $T = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \quad \pi_V = \begin{pmatrix} \frac{1}{2}, \frac{1}{2} \end{pmatrix}$

Entropy rate?

$${}^{``}h_{\mu}^{A}(SNS)" = -\sum_{v \in V} \Pr(v) \sum_{v' \in V} \Pr(v'|v) \log_{2} \Pr(v'|v)$$
$$= 1 \text{ bit/symbol}$$

Measures from the ϵM :

Method B:

Lower bound by entropy rate for "support" process:

No consecutive 0s!

Support process is GMP $\frac{1}{2}$

$$T = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{pmatrix} \quad \pi_V = (2/3, 1/3)$$

A restriction that lowers entropy rate:

$$\begin{split} h^B_\mu(\mathrm{GMP}) &= -\frac{2}{3} \sum_{s \in \mathcal{B}} \Pr(s|1) \log_2 \Pr(s|1) + 0 \\ &= \frac{2}{3} \approx 0.6666667 \text{ bits/symbol} \end{split}$$

Measures from the ϵM :

"SNS entropy rate" larger than support process?

" $h^A_\mu(SNS)$ " $\gg h^B_\mu(GMP)$

Not possible! Entropy of distribution always \leq Entropy of support

Use of SNS presentation leads to overestimate of entropy rate: internal process more random than observed process.

So how to compute SNS process's entropy rate?

Measures from the ϵM :

Method C:

Estimate entropy rate from output process:

$${}^{``}h^C_{\mu}(\text{SNS})" = -\sum_{v \in V} \Pr(v) \sum_{(s,v') \in (\mathcal{A},V)} \Pr(s,v'|v) \log_2 \Pr(s,v'|v)$$
$$= -(\frac{1}{2} \times 0 - \frac{1}{2} \times 1)$$
$$= \frac{1}{2} \text{ bits/symbol}$$

Measures from the ϵM :

Entropy rate?

 $``h^A_\mu(\text{SNS})" \gg h^B_\mu(\text{GMP}) \gg ``h^C_\mu(\text{SNS})"$

Lessons:

I. Cannot use nonunifilar HMM presentations for entropy rate. 2. Need ϵM to calculate entropy rate.

SNS example: Nontrivial, countably infinite ϵM .

 $h_{\mu}(SNS) \approx 0.6778 \text{ bits/symbol}$

Curious:

Even to estimate a process's intrinsic randomness, need to infer its structure.

Measures from the $\epsilon M...$

Statistical Complexity of ϵM :

$$C_{\mu}(\boldsymbol{\mathcal{S}}) = -\sum_{\boldsymbol{\mathcal{S}}\in\boldsymbol{\mathcal{S}}} \Pr(\boldsymbol{\mathcal{S}}) \log_2 \Pr(\boldsymbol{\mathcal{S}})$$

where $\Pr(\mathcal{S})$ is casual-state asymptotic probability.

Meaning:

Shannon information in the causal states.

Measures from the $\epsilon M...$

Statistical Complexity of a Process:

$$C_{\mu}\left(\Pr(\overset{\leftrightarrow}{S})\right) = C_{\mu}(\boldsymbol{\mathcal{S}})$$

Meaning:

The amount of historical information a process stores.

The amount of structure in a process.

Measures from the $\epsilon M...$

Excess Entropy: Three versions, all equivalent for ID processes

$$\mathbf{E} = \lim_{\substack{L \to \infty \\ \infty}} \left[H(L) - h_{\mu} L \right]$$
$$\mathbf{E} = \sum_{\substack{L=1 \\ L=1}}^{\infty} \left[h_{\mu}(L) - h_{\mu} \right]$$
$$\mathbf{E} = I[\overleftarrow{S}; \overrightarrow{S}]$$

How to get, given ϵM ?

Special cases: When ϵM is IID, periodic, or spin chain.

General case: Need a new framework ... next lectures.

Measures from the $\epsilon M...$

Excess Entropy ...

 ϵM is IID: $\mathbf{E} = 0 \qquad C_{\mu} = 0$

 ϵM is Period P: $\mathbf{E} = \log_2 P = C_{\mu}$

 ϵM is range-R spin chain:

$$\mathbf{E} = H(R) - Rh_{\mu}$$
$$\mathbf{E} = C_{\mu} - Rh_{\mu}$$

Measures from the $\epsilon M...$

Excess Entropy ...

```
Typically for Markov Chains:
```

 $\mathbf{E} < C_{\mu}$

What can be said in general?

Measures of Complexity ... Measures from the ϵM ...

Bound on Excess Entropy:

 $\mathbf{E} \le C_{\mu}$

Proof sketch: (1) $\mathbf{E} = I[\overrightarrow{S}; \overleftarrow{S}] = H[\overrightarrow{S}] - H[\overrightarrow{S} | \overleftarrow{S}]$ (2) Causal States: $H[\vec{S} \mid \vec{S}] = H[\vec{S} \mid S]$ (3) $\mathbf{E} = H[\vec{S}] - H[\vec{S} |\mathcal{S}]$ $=I[\overrightarrow{S};\mathcal{S}]$ $= H[\mathcal{S}] - H[\mathcal{S}|\stackrel{\rightarrow}{S}]$ $< H[\mathcal{S}] = C_{\mu}$

 \bigcirc

Measures of Complexity ... Measures from the $\epsilon M\,$...

Bound on Excess Entropy ...

But, the bound is saturated!

Even process:

 $C_{\mu} = H(2/3) \approx 0.9182$ $\mathbf{E} \approx 0.9182$

$$T^{(0)} = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & 0 \end{pmatrix}$$
$$T^{(1)} = \begin{pmatrix} 0 & \frac{1}{2}\\ 1 & 0 \end{pmatrix}$$
$$\pi_V = (2/3, 1/3)$$

When does this occur?

In general, need a new framework for answering this question.

Measures from the $\epsilon M\,$...

Bound on Excess Entropy ...

Consequence: The Cryptographic Limit

Can have $\mathbf{E} \to 0$ when $C_{\mu} \gg 1$.

State information is still there, just hidden in the observed sequences.

Goal of cryptography: Cyphertext appears random to all observers, but still contains the original information, recoverable by the intended recipient.

Measures from the $\epsilon M\,$...

Bound on Excess Entropy ...

For example: The Almost IID Processes

 $C_{\mu} \approx \log_2 |\boldsymbol{\mathcal{S}}|$

Measures from the $\epsilon M\,$...

Bound on Excess Entropy ... $\mathbf{E} \leq C_{\mu}$

Consequence:

Excess entropy is not the process' stored information.

Statistical complexity C_{μ} is the stored information.

E is the *apparent* information, as revealed in *measurement* sequences.

Measures from the $\epsilon M\,$...

Bound on Excess Entropy ... Executive Summary:

 C_{μ} is the amount of information the process uses

to communicate

 ${f E}$ bits of information from the past to the future.

Measures from the $\epsilon M\,$...

Bound on Excess Entropy: $\mathbf{E} \leq C_{\mu}$

Consequence:

The inequality is Why We Must Model.

Cannot simply use sequences as states.

There is internal structure not expressed by sequences.

Widespread misconception about excess entropy $I[X; \vec{X}]$: "the predictive information". No! C_{μ} is the information required to optimally predict. Excess entropy is the "predictable" information: that which can be predicted.

Measures from the $\epsilon M\,$...

Bound on Predictability (Redundancy):

 $r(1) \le C_{\mu}$

Proof sketch: (I) $r(1) = H[S^{-1}] - h_{\mu}$ (2) $H[\overrightarrow{S}^1] - h_u = H[\overrightarrow{S}^1] - H[\overrightarrow{S}^1] + H[\overrightarrow{S}^1]$ $= H[\overrightarrow{S}^{1}] - H[\overrightarrow{S}^{1}|\mathcal{S}]$ $= I[\vec{S}^{1};\mathcal{S}]$ $\leq H[\mathcal{S}]$ $= C_{\mu}$

An ϵM Captures "Pattern":

```
Symmetry = group:
```

```
Rotate square 90^{\circ} in plane.
Square appears in original orientation.
```

```
Square "shape" is invariant under 90^{\circ} rotation.
```

```
Inverse: Rotate by -90^{\circ}.
```

An ϵM Captures "Pattern" ...

 ϵM is a monoid:

 $\{T_{ij}^{(s)}\}\$ form a semi-group with identity. Semi-group is a group without a unique inverse.

When semi-group is a group: ϵM algebra describes a symmetry.

Semi-groups describe "generalized", noisy, wild-card symmetries.

An ϵM Captures "Pattern":

Example of Group: Period-2 process

Temporal translation symmetry: Shift time by two steps ($t \rightarrow t + 2$), get same sequence.

 $\epsilon M\,\text{period-2}$ in the causal states:

 $\dots ABABABABABAB \dots$

An ϵM Captures "Pattern":

Example: Random process

 $\dots 0101000100010100010001\dots$

Period-2 in the causal states: Detects the order in chaos

 $\dots ABABABABABAB \dots$

Temporal translation symmetry: Shift time by two steps $(t \rightarrow t + 2)$, get same statistics.

An ϵM Captures "Pattern":

Example: GMS "pattern" = No consecutive 0s By inspecting ϵM structure.

Example: Even process "pattern" = "Evenness" By inspecting ϵM structure.

An ϵM Captures "Pattern":

Measurement semantics:

What does a particular measurement mean?

Measurement Channel

An ϵM Captures "Pattern":

Measurement semantics: Prediction level

What is the meaning of a particular measurement s?

Shannon says the amount of "information" in s is:

 $-\log_2 \Pr(\text{observing } s)$

Given ϵM (assuming you're sync'd to internal (causal) state): $-\log_2 \Pr(\text{observing } s) = -\log_2 \Pr(S \rightarrow_s S')$

An ϵM Captures "Pattern":

Measurement semantics: Prediction level ...

$$H(s_{11}|s_{10}=1,s_9=1,...)\approx h_{\mu}(\approx 0.585 \text{ bits})$$

Degree of observer's surprise (predictability) Does not say what the event $s_{11} = 1$ means to the observer!

An ϵM Captures "Pattern":

Measurement semantics ...

Meaning: Tension between representations of same event at different levels; e.g.:

Level I is data stream and the event is a measurement Level 2 is the agent and the event updates it's model

Degree of meaning of observing $s \in \mathcal{A}$:

$$\Theta(s) = -\log_2 \Pr(\rightarrow_s S)$$

where \mathcal{S} is the causal state to which s brings observer.

Meaning content: State selected from anticipated palette.

An ϵM Captures "Pattern":

Measurement semantics ...

Meaningless: Start state (all futures possible)

$$\Theta(s) = -\log_2 \Pr(\mathcal{S}_0) = -\log_2 1 = 0 \qquad s = \lambda$$

Action on disallowed transition:

Reset to state of total ignorance (start state) Disallowed transition is meaningless.

Meaningless measurements are informative, though:

$$-\log_2 \Pr(\mathcal{S} \to_s \mathcal{S}_0) = -\log_2 0 = \infty$$

An ϵM Captures "Pattern":

Measurement semantics ...

Theorem:

$$\langle \Theta(s) \rangle = C_{\mu}$$

Average amount of meaning is the Statistical Complexity.

An ϵM Captures "Pattern":

Measurement semantics: Example

Observer's Semantic Analysis				
State	Measurement	Surprise (bits)	Semantic State: Meaning	Degree of Meaning [bits]
A	λ	Not defined	No measurement	0
A	I	0.585	A: Unsynchronized	0.585 00
Α	0	I.585	B: Synchronized	I.585 0.585
В	I	I	C: Odd # Is	I.585
В	0		B: Even # 1s	0.585
С		0	B: Even # Is	0.585
C	0	∞	A: Loose sync; reset	0

... the Even Process

An ϵM Captures "Pattern":

Measurement semantics: ... the Even Process?

Semantics induced by any model: Even an incorrect one!

No, not exactly:

An ϵM Captures "Pattern":

Measurement semantics: Slipped something by ...

Preceding was about the *amount* of meaning! Related to amount of memory/structure But what is the meaning content?

Meaning = Algebra of the ϵM

An ϵM Captures "Pattern":

Measurement semantics ...

D. M. MacKay, "Information, Meaning & Mechanism", MIT (1969):

Meaning as selection of anticipated context.

Here:

 ϵMs give the natural set of contexts (causal states) for an information source.

Reading for next lecture:

CMR articles TBA and PRATISP.