
The   -Machine
Reading for this lecture:

    CMR article CMPPSS and Lecture Notes.
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Causal States
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Causal State:

←

s
′

,
←

s
′′

∈

←

S

←
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′
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′′

⇐⇒ Pr(
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←
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←
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′

) = Pr(
→
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←

S=
←
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′′
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T
(s)
ij = Pr(Sj , s|Si)

= Pr
(

S = ε(
←

s s)|S = ε(
←

s )
)

Conditional transition probability:

The   -Machine ...ε

Causal state set:

S =

←

S/ ∼ = {S0,S1,S2, . . .}

M =

{

S, {T (s), s ∈ A}
}
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Recurrent States

Transient States

Unique Start State:

S0 = [λ]

Pr(S0,S1,S2, . . .) = (1, 0, 0, . . .)

State State
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Process � Predictive equivalence � ��Machine
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$
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S, {T (s), s 2 A}
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Not always finite state!
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Pr(
$
S ) )

 
S / ⇠ ) M =

n
S, {T (s), s 2 A}

o



Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield

The   -Machine ...ε

Not always finite state!

Process � Predictive equivalence � ��Machine

Pr(
$
S ) )

 
S / ⇠ ) M =

n
S, {T (s), s 2 A}

o

The Calculi of Emergence 39
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Figure 15 The infinite causal representation of the nondeterministic process of Figure 11. The labels in the states indicate

the relative weights of the original internal states . The numbers in parentheses are the asymptotic state probabilities:

.
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Figure 16 At a higher computational level a single state machine, augmented by a counter register, finitely describes the process

of Figures 11 and 15.

In this example, the agent can be considered to have simply selected the wrong instrument.

The penalty is infinite complexity. Thus, the logistic map can appear to have an infinite number of

causal states and so infinite topological complexity. In contrast to the preceding sections, which

illustrated infinite intrinsic complexity, this example illustrates measurement-induced complexity.

Stochastic counter automata

The apparent infinite complexity of the deterministic denumerable-state machine of Figure

15 gives way to a finite representation once the regularity of the change in transition probabilities

is discovered. The resulting model — in the class of stochastic counter automata for this one

example — is shown in Figure 16. The structural innovation is a counter, denoted , that

begins with the value . can be either incremented by one count or reset to . When is

observed, the counter is reset to . As long as is observed, the counter is incremented. The

nondeterminism of the original process is simulated in this deterministic representation using the

counter to modify the transition probabilities: it keeps track of the number of consecutive s. The

transition probabilities are calculated using the value stored in the counter:

and . The finite control portion of the machine is simply a single state

machine, and so its complexity is zero. But the required register length grows like . The

cost of nondeterminism in this example is this increment-reset counter.

Recurrent hidden Markov models

This example is just one from a rich class of processes called — depending on the field

— recurrent hidden Markov models, stochastic nondeterministic finite automata, or functions of
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Not always finite state!

Process � Predictive equivalence � ��Machine
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$
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Not always finite state!

Process � Predictive equivalence � ��Machine
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A Model of a Process           :

Pr(s1),Pr(s2),Pr(s3), . . .

s
L

= s1s2 . . . sL

Pr(sL) =
L∏

l=1

T
(sl)
i=ε(sl−1),j=ε(sl)

Pr(
�
S )

Initially,                  .Pr(S0) = 1

  -Machine reproduces the process’s word distribution:

Pr(sL) = Pr(S0)Pr(S0 �s=s1 S(1))Pr(S(1)�s=s2 S(2))
· · ·Pr(S(L� 1)�s=sL S(L))

ε

S(t = 0) = S0



Get                                 from

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield
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A Model of a Process            ...

Pr(s1),Pr(s2),Pr(s3), . . .

Pr(
�
S )

Calculate word distribution from recurrent states:

|1� =

�

⇧⇤
1
1
...

⇥

⌃⌅Pr(s) = ��|T (s)|1⇥

Pr(s0s1) = ��|T (s0)T (s1)|1⇥

Pr(sL) = ��|T (sL)|1⇥

T (sL) = T (s0)T (s1) · · · T (sL�1)

...

T =
�

s�A
T (s)

Then

��| = (pS1 , pS2 , . . .)

Si � Srecurrent



Properties:
   Shielding: Conditional independence of future & past
   Unifilar
   Markovian
   Optimal predictor
   Minimal size
   Unique
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Causal shielding:
     Past and future are independent given causal state:

The   -Machine ...ε

Process: Pr(
↔

S ) = Pr(
←

S
→

S )

Pr(
←

S
→

S |S) = Pr(
←

S |S) Pr(
→

S |S)

Causal states shield past & future from each other.

Similar to states of a Markov chain, but for hidden processes.

In fact, there is a Markov chain (in info-theoretic sense):

 
S?S

!
S

<latexit sha1_base64="Bb9l735luuSUEi0KQSBvw0965Dg="></latexit> �
X ) S ) �!X
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Proof sketch:

But, also, Pr
(

→

S |
←

S=
←

s

)

= Pr
(

→

S |S = ε(
←

s )
)

Pr

(

→

S |
←

S=
←

s ,S = σ
)

= Pr

(

→

S |S = σ
)

!!

Will show: Pr(
�
S |

�
S,S) = Pr(

�
S |S)

Pr(
�
S |S) = Pr(

�
S
�
S |S)

= Pr(
�
S |

�
S,S)Pr(

�
S |S)

So,

S = ✏( �s ))

Pr
⇣�!
S | �S = �s 0

,S = ✏( �s )
⌘
= Pr

⇣�!
S | �S = �s

⌘
( �s 0 2 [ �s ])

(Causal equiv. rel’n)
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are Unifilar:εMs (St, s) → unique St+1

(1)                        , at most one            :

(2) If there is a next causal state   :

(3) If there is not:

Si ∈ S, s ∈ A Sj ∈ S

←

s ∈ Si ⇒
←

s s ∈ Sj

Sk !=j ∈ S ⇒ T
(s)
ik = 0

T
(s)
ij = 0

ε

That is:

j

 (in automata theory, “deterministic”)
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ε

Proof sketch:
   Must show

←

s ∼
←

s

′

⇒
←

s s ∼
←

s

′

s

Futures with symbol prefixed: sF

Pr

(

→

S∈ sF |
←

S=
←

s
)

= Pr

(

→

S∈ sF |
←

S=
←

s
′
)

Pr

(

→

S
1

= s,
→

S 1∈ F |
←

S=
←

s

)

= Pr

(

→

S
1

= s,
→

S 1∈ F |
←

S=
←

s
′

)

Pr

(

→

S 1∈ F |
→

S
1

= s,
←

S=
←

s

)

Pr

(

→

S
1

= s|
←

S=
←

s

)

= Pr

(

→

S 1∈ F |
→

S
1

= s,
←

S=
←

s
′

)

Pr

(

→

S
1

= s|
←

S=
←

s
′

)

Pr

(

→

S 1∈ F |
←

S=
←

s s
)

= Pr

(

→

S 1∈ F |
←

S=
←

s
′

s
)

⇒
←

s s ∼
←

s
′

s !!

Unifilarity ...

�
s��s

�
�

(Stationarity and
     by assumption

                                )
Pr(
�!
S 1 = s| �s ) = 1

Pr(
�!
S 1 = s| �s 0

) = 1

F ✓ AZ+

Pr(X,Y |Z) = Pr(Y |Z)Pr(X|Y, Z)
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ε

Consequence:

Unifilarity: 1-1 map between state-sequences & symbol-sequences.

     Entropy rate expression requires this 1-1 mapping.

Can (must) use      to calculate entropy rate     .εM hµ

Unifiliarity ...
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are first-order Markov in state sequences:εMs

Pr(St| . . .St−2St−1) = Pr(St|St−1)

Proof sketch:
   Show

    (Additional conditioning removed by induction.)

Pr(St|St−2St−1) = Pr(St|St−1)

Pr(St ∈ M ⊂ S|St−2St−1) = Pr(
→

S

1

∈ A ⊂ A|St−2St−1)

= Pr(
→

S

1

∈ A|St−1)

= Pr(St ∈ M |St−1)

(Causal shielding)

!!
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are Optimal Predictors:εMs

Compared to any rival effective states    :R

H

[

→

S

L

|R

]

≥ H

[

→

S

L

|S

]

Proof sketch: H

[

→

S

L

|S

]

= H

[

→

S

L

|
←

s ∈ S

]

= H

[

→

S

L

|
←

s

]

≤ H

[

→

S

L

|R

]

!!

R = �(
�
s )

(Data processing inequality)

(Causal equiv. rel’n)
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are Optimal Predictors ...εMs

Proof:

!!

Lemma:

hµ(S) = hµ

(Stationarity)

hµ(S) = lim
L!1

1

L
H

h�!
S

L|S
i

= lim
L!1

1

L
H

h�!
S

L| �S
i

= lim
L!1

1

L
LH

h
S| �S

i

= H

h
S| �S

i

= hµ

(Block entropy)

(Causal equiv. rel’n)

hµ(R) � hµCorollary:
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are Optimal Predictors ...εMs

Corollary (Maximal Prescience):

Π(S) = log2 |A|− hµ = G

Π(R) ≤ Π(S)

�(R) = log2 |A|� hµ(R)Rival model:

But:
hµ(R) � hµSo:

Π(R) ≤ Π(S)
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are Optimal Predictors ...εMs

Remarks:
(1) Causal states contain every difference (in past)

that makes a difference (to future)
             (Recall Bateson “information”)

(2) Causal states are sufficient statistics for the future.
          (See below.)
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Prescient Rivals    :
      Alternative models that are optimal predictors

R̂

(Prescient rivals are sufficient statistics for process’s future.)

H[
→

S

L

|R̂] = H[
→

S

L

|S] R̂

R̂

R

S

�R � �R
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Prescient rivals are refinements of causal states:

The   -Machine ...ε

Proof sketch:
(1) Either             :

             Then make same prediction,

(2) Or     consists of pieces of various    .

Then its morph is a statistical mixture of various    morphs:

Si

Si

S1

S2

S3

S4
S5

R1
R2

Rk � Si

Rk

Pr
⇣�!
S |Rk

⌘
= Pr

⇣�!
S |Si

⌘

Pr(
!
S |Rk) =

X

i

ciPr(
!
S |Si)

(Not a refinement.)



Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield

Prescient rivals are refinements of causal states:

The   -Machine ...ε

Proof sketch ... 

   But mixing distributions increases entropy:

    Thus, worse prediction with rival.

S1

S2

S3

S4
S5

R1
R2

H

�
�

i

ciPi

�
�

�

i

H(Pi)

Contradiction!
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Prescient rivals are refinements of causal states ...

The   -Machine ...ε

Proof sketch ...

     To be equally prescient, rival must be a refinement:

S1

S2

S3

S4S5 R1

R2

R3

R4

R5

R6

R7

R8
R9

R10

!!
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Minimal Statistical Complexity:

The   -Machine ...ε

For all prescient rivals,       is the smallest:εM

Cµ(R̂) ≥ Cµ(S)

Proof sketch:
(1) Prescient rivals are refinements, so

(2) But

(3) So

∃g : S = g(R̂)

H[f(X)] ≤ H[X] ⇒ H[S] = H[g(R̂)]

Cµ ≤ H[R̂] !!

� H[ �R]
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Minimal Statistical Complexity ...

The   -Machine ...ε

Consequence:

(1)      measures historical information process stores.

(2) This would not be true, if not minimal representation.

Cµ
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The   -Machine ...ε

are Unique:εMs

Prescient rival of same size is, up to state relabeling, the      .εM

Cµ(R̂) = Cµ(S) ⇒ R̂ = S

Proof Sketch:
(1) Refinement:
(2) Other way?
(3) Show                   .  Consider:  

S = g(R̂)
f : R̂ = f(S)

H[R̂|S] = 0

H[S] − H[S|R̂] = H[R̂] − H[R̂|S]

H[S|R̂] = 0H[S] = H[R̂] − H[R̂|S]

H[S] = H[R̂]

H[R̂|S] = 0

g = f−1 !!

But
So

�
) bR = f(S)

I[S; bR]
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have Minimal State-Stochasticity:εMs

Proof Sketch:
(1) Entropy Chain Rule:

(2) Unfilarity:

(3) So:

H[R̂t|R̂t−1] ≥ H[St|St−1]

H

[

St|St−1,
→

S
1
]

= 0

H

[

→

S
1

|St−1

]

= H

[

St,
→

S
1

|St−1

]

H

h
St,

�!
S

1|St�1

i
= H

h�!
S

1|St�1

i
+H

h
St|,

�!
S

1
,St�1

i
H[X,Y |Z] = H[Y |Z] +H[X|Y, Z]
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The   -Machine ...ε

have Minimal State-Stochasticity ...εMs

(4) Again: 

        (5) Also, by chain rule:

         (6) Putting (4) and (5) together gives:

H

[
R̂t,

→

S
1

|R̂t−1

]
= H

[
→

S
1

|R̂t−1

]
+ H

[
R̂t|

→

S
1

, R̂t−1

]

≥ H

[
→

S
1

|R̂t−1

]

= H

[
→

S
1

|St−1

]

= H

[
St,

→

S
1

|St−1

]
(Refinement)

H

[
R̂t,

→

S
1

|R̂t−1

]
= H

[
R̂t|R̂t−1

]
+ H

[
→

S
1

|R̂t, R̂t−1

]

H
⌅

⇤Rt| ⇤Rt�1

⇧
+ H

�
⇥
S

1
| ⇤Rt, ⇤Rt�1

⇥
� H

�
St,

⇥
S

1
|St�1

⇥
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The   -Machine ...ε

have Minimal State-Stochasticity ...εMs

(7) Expand RHS of (6) and re-arrange:

(8) Note:

(9) So,

(10) And so RHS of (7) > 0 and we have:

!!

H[R̂t|R̂t−1] − H[St|St−1] ≥ H

[
→

S
1

|St,St−1

]
− H

[
→

S
1

|R̂t, R̂t−1

]

St = g(R̂t) ⇒ (St,St−1) = g
′(R̂t, R̂t−1)

H[R̂t|R̂t−1] ≥ H[St|St−1]

H

�
⇥
S

1
| ⇤Rt, ⇤Rt�1

⇥
� H

�
⇥
S

1
|St,St�1

⇥
H[X|Y ] � H[X|g(Y )]
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X ⇠ Pr✓(x)Random variable

[EIT,  Section 2.9]Sufficient statistic           for    : 
    Contains all info in    for   .

    That is,

T (X) �
�X

I[✓;X] = I[✓;T (X)]

Minimal sufficient statistic:
            is a function of every other sufficient statistic          .T (X) U(X)
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The   -Machine ...ε

!!

is a Minimal Sufficient Statistic for a Process.εM

Proof Sketch:

(1) Maximal prescience gives sufficiency:

(2) In fact, every prescient rival     is a sufficient statistic.

     (3)       is minimal sufficient statistic:
            Rival states are refinements of causal states:                .

εM

Lesson: You can calculate everything about process from its      .εM

I[
�!
S L;S] = I[

�!
S L;
 �
S ]

I[
�!
S L; bR] = I[

�!
S L;
 �
S ]

bR

S = g( bR)



    :

(1) Optimal predictor: Lower prediction error than any rival.

(2) Minimal size: Smallest of the prescient rivals.

(3) Unique: Any smallest, optimal, unifilar predictor is equivalent.

(4) Model of the process: Reproduces all of process’s statistics.

(5) Causal shielding: Renders process’s future independent of past.
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The   -Machine ...ε

εM

Summary:
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The   -Machine ...ε

Dynamical system’s intrinsic computation:

   (1) How much of past does process store?

   (2) In what architecture is that information stored?

   (3) How is stored information used to produce future behavior?



Reading for next lecture:

    CMR articles CMPPSS & RURO.
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