The e-Machine

Reading for this lecture:

CMR article CMPPSS and Lecture Notes.

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The Learning Channel:

System  Instrument Process Modeller

Central questions:
What are the states!
What is the dynamic!?
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The Learning Channel:

System  Instrument Process Modeller

Central questions:
What are the states! Causal States
What is the dynamic? The €-Machine

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The e-Machine ...
M = {S, (T s e A}}

Causal State:

/

I

)=Pr(S|S=75 )

! /!

S ~ 8§ <= Pr(§|§:<§

)

s,s €8
Causal state set:

S=S/~ =1{850,51,8s,...}

Conditional transition probability:
T\ = Pr(S;, 5[S))
— Pr (5 — (55)|S = E(Z))

Lecture 15: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The e-Machine ...

Process = Predictive equivalence = € — Machine

Pr(g*)) = §/~ = M:{S,{T(S>,36A}}

State State )
- 1 :

| .
| Transient
| States

Unique Start State:
So = [A
PT(SO,Sl,SQ,...) — (1,0,0,) _

Transient States

Recurrent

Recurrent States States

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The e-Machine ...

Process = Predictive equivalence = € — Machine

Pr(g) = §/~ = M:{S,{T(S>,36A}}

Not always finite state!
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The e-Machine ...

Process = Predictive equivalence = € — Machine

Pr(g) = §/~ = M:{S,{T(S>,36A}}

Not always finite state!

Pr(A)

Pr(C)

Pr(B)

Pr(D)
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The e-Machine ...

Process = Predictive equivalence = € — Machine

Pr(g) = §/~ = M:{S,{T(S>,36A}}

Not always finite state!
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The e-Machine ...

Process = Predictive equivalence = € — Machine

Pr(S) = S/~ = M=1{8{T® sc A}

Not always finite state!

Pr(B)

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The e-Machine ...

<>

A Model of a Process Pr(S):

€-Machine reproduces the process’s word distribution:
Pr(s'),Pr(s?), Pr(s?),...

SL:5152...SL S(t:O):SO
Pr(s?) = Pr(So)Pr(Sy —s—s, S(1))Pr(S(1) —s_s, S(2))
- Pr(S(L — 1) —4=s, S(L))

Initially, Pr(Sg) = 1.

L

Ly _ (s1)
Pr(s™) = lHlTizdsll),j:e(sl)

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The e-Machine ...

<>

A Model of a Process Pr(9) ...

Calculate word distribution from recurrent states: S; € Srecurrent

Pr(s'), Pr(s%),Pr(s°),...

Get <7T| — (psl,pSQ, C. ) from 7T = Z T(S)
Then scA 1
Pr(s) = <7T\T(S)\1> 1) = 1

PI(S()Sl) — <7T|T(SO)T(81)‘1>
Pr(s*) = (x|T¢|1)

(™) — plso)p(s1) . plsp—1)

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The e-Machine ...

Properties:

Shielding: Conditional independence of future & past
Unifilar

Markovian
Optimal predictor
Minimal size
Unique

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

Causal shielding: N
Past and future are independent given causal state: SLsS

Process: Pr(g) — Pr(gg)

Pr(S S |S) = Pr(S |S) Pr(S |S)

Causal states shield past & future from each other.
Similar to states of a Markov chain, but for hidden processes.

In fact, there is a Markov chain (in info-theoretic sense):

%:>S:>Y

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...
Proof sketch:

Pr(S|S) = Pr(sS|S)
= Pr(S|S5,8)Pr(S |S)
Will show: P]r(g> | §,S) = P]f(g> S)

S=¢('5)=

Pr(§<S:§/,S:e(?)):Pr(S\S:?) (‘s

But, also, Pr (§ | g= <_> = Pr (§ S = e(<§)> (Causal equiv. rel’n)
So,PI‘(g\E:;,S:J):Pr(§|820) O

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

eMs are Unifilar: (S¢,s) — unique S;yq

That ic: (in automata theory, “deterministic’)
(1) S; €S, s€ A,at mostone S; € S:
s5€S, = ss€eS;
(2) If there is a next causal state j:
Spe; €8 =TV =0

(3) If there is not:

(s) _
T =0

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...
Unifilarity ...

Proof sketch:

— —/ — —/

Mustshow s ~ s = ss~ S S

Futures with symbol prefixed: sF FcA”

—1 — — «— — — —/
Pr(S =s,51€ F| S= s) :Pr<S =s,51€ F| S= s )
Pr(X,Y|Z) = Pr(Y|Z)Pr(X|Y, Z)
— —1 «— —1 «— - — -1 — ! —1 — !
Pr(SleF| S =s,8= S)PI’( =s| S= S) :Pr(SleF\ S =s,8=s >Pr<S =s| S= S>
Pr (§1€ F| §: ?s) = Pr (§1e F| E: ?ls) (Stationarity and
L by assumption
= SS~ S8 S O Pr( 1:3|§):1

Pr(9l =s/%") = 1)

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

Unifiliarity ...

Consequence:
Unifilarity: |-1 map between state-sequences & symbol-sequences.
Entropy rate expression requires this |-1 mapping.

Can (must) use eM to calculate entropy rate .

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...
eMs are first-order Markov in state sequences:
PI’(St‘ “ . St—ZSt—l) — Pf(8t|8t_1)

Proof sketch:
Show

Pr(5t|8t_28t_1) — PI’(St‘St_l)
(Additional conditioning removed by induction.)
1
Pr(St c M C S|St_28t_1) — PI‘(S c AC A‘St_gst_l)

—1
— PI’(S - A|St_1) (Causal shielding)
— PI’(St - M‘St_l) O

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

eMs are Optimal Predictors:

Compared to any rival effective states i :
-z

-z
S |R

H

Proof sketch: H

> H

O

(Causal equiv. rel’n)

R=n(s)

(Data processing inequality)

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

eMs are Optimal Predictors ...
Lemma:
hu(S) — hu

1 —
Proof: ,(S) = lim —H ?L\S} (Block entropy)
— OO _

A S —
— lim — H ?L‘ S} (Causal equiv. rel’n)
L—oo L i

1 <
— lim —LH {S‘ S} (Stationarity)

L— o0
= H 5|5
— b, 5

Corollary: h,(R) > h,

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield




The €-Machine ...

eMs are Optimal Predictors ...

Corollary (Maximal Prescience): II(R) < II(S)
Rival model: II(R) = log, |A| — h,(R)

But: II(S) =log, |A| — h, =G
So: TI(R) < II(S)

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

eMs are Optimal Predictors ...
Remarks:
(1) Causal states contain every difference (in past)

that makes a difference (to future)
(Recall Bateson “information”)

(2) Causal states are sufficient statistics for the future.
(See below.)

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

Prescient Rivals R.:
Alternative models that are optimal predictors

R

(Prescient rivals are sufficient statistics for process’s future.)

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

Prescient rivals are refinements of causal states:

Proof sketch:
(1) Either R, C §;:
Then make same prediction,

Pr (?\Rk) — Pr (?m) %‘

(2) Or R} consists of pieces of various §;.

(Not a refinement.)

Then its morph is a statistical mixture of various S; morphs:

Plr(g> Ry) = ZCiPr(g S;)

1

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

Prescient rivals are refinements of causal states:

Proof sketch ...

But mixing distributions increases entropy:

H Y c¢Pi| > H(P)

1

Thus, worse prediction with rival.

Contradiction!

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

Prescient rivals are refinements of causal states ...

Proof sketch ...

To be equally prescient, rival must be a refinement:

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

Minimal Statistical Complexity:

For all prescient rivals, eM is the smallest:

S

Cu(R) 2 Cu(S)

Proof sketch:
(1) Prescient rivals are refinements, so

AN

dg: S = g(R)
(2) But

H[f(X)] < H[X] = H[S] = H[g(R)] < H[R
(3) So C, < H|R]

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield




The €-Machine ...

Minimal Statistical Complexity ...

Consequence:
(1) C'), measures historical information process stores.

(2) This would not be true, if not minimal representation.

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

eMs are Unique:

Prescient rival of same size is, up to state relabeling, the ¢M.

AN

C.(R)=C,S)=R=S8

Proof Sketch:

(I) Refinement: S = g( )
(2) Other way? f : R = f(S)

(3) Show H[R|S] = 0. Consider: I[S; R]
H|[S] — H[S|R] = H[R] — H[R|S
H[S] = H[R] — H[R|S
But H|[S] = H[R]
So H|R S| =0
= R = f(S)
=g=f"

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield




The €-Machine ...

eMs have Minimal State-Stochasticity:
HRt|R¢-1] = H[S:|S;-1]

Proof Sketch:
(1) Entropy Chain Rule: H|X,Y|Z] = H|Y|Z]| + H|X|Y, Z]

H [St,gl\St_l] — H [§1|5t_1} + H {St|7§178t—1}

(2) Unfilarity:

_ 1
H St‘St—la S =0

(3) So:

1 SN
H\|S |Si-1|=H |5, S |5i-1

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

eMs have Minimal State-Stochasticity ...

(4) Again: R 1 - R
H {RuS ’Rt—l} =H|S |Ri—1| +H {Rt‘ S aRt—l}

—1
>H|S |Ri—a
:_>1
—H | S ‘8,51} (Refinement)

(5) Also, by chain rule:

—1

HI|R: S |7€t_1 :H[Rt\Rt_d-l—H S |Re, Ri—1

(6) Putting (4) and (5) together gives:
H [ﬁt\ﬁt_l} +H

—1 —1

S ‘ﬁtyﬁt—l > H |8, S |[Sia

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The e-Machine ...

eMs have Minimal State-Stochasticity ...

(7) Expand RHS of (6) and re-arrange:

o~ o~ —1 —1 ~
H{R¢|R¢—1] — H[S:|St—1] 2 H {S |St78t1} - H {S \Rt,Rtl}

(8) Note:

AN

St = Q(Rt) — (StaSt—l) — g/(ﬁtaﬁt—l)

—1

P 1
H|S |Re,Re—1| < H|S |5, 811

(10) And so RHS of (7) > 0 and we have:

H[R¢|Ri—1] > H[S|S: 1]

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield

HIX[Y] < H[X|g(Y)]




The €-Machine ...

Random variable X ~ Pry(x)

Sufficient statistic T'(X) for 6 : [EIT, Section 2.9]
Contains all info in X for 6.

That is, I[0; X] = 1[0; T(X)]

Minimal sufficient statistic:
T'(X)is a function of every other sufficient statistic U (X).

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

eM is a Minimal Sufficient Statistic for a Process.

Proof Sketch:

(1) Maximal prescience gives sufficiency:
1848 =1[8% 5

(2) In fact, every prescient rival R is a sufficient statistic.
I[SER) = 1[8% )

(3) eM is minimal sufficient statistic:

Rival states are refinements of causal states: S = g(R).

Lesson:You can calculate everything about process from its eM.

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield




The €-Machine ...

Summary:

eM :
(1) Optimal predictor: Lower prediction error than any rival.
(2) Minimal size: Smallest of the prescient rivals.
(3) Unique: Any smallest, optimal, unifilar predictor is equivalent.
(4) Model of the process: Reproduces all of process’s statistics.

(5) Causal shielding: Renders process’s future independent of past.

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

Dynamical system’s intrinsic computation:
(1) How much of past does process store!
(2) In what architecture is that information stored!?

(3) How is stored information used to produce future behavior?

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



The €-Machine ...

Reading for next lecture:

CMR articles CMPPSS & RURO.

Lecture 24: Natural Computation & Self-Organization, Physics 256B (Spring 2021); Jim Crutchfield



